Journey planner with RAPTOR algorithm
Project description
PyRaptor
Python implementation of RAPTOR and McRAPTOR using GTFS data. Tested on Dutch GTFS data.
This repository contains four applications:
pyraptor/gtfs/timetable.py
- Extract the timetable information for one operator from a GTFS dataset and write it to an optimized format for querying with RAPTOR.pyraptor/query_raptor.py
- Get the best journey for a given origin, destination and desired departure time using RAPTORpyraptor/query_range_raptor.py
- Get a list of the best journeys to all destinations for a given origin and desired departure time window using RAPTORpyraptor/query_mcraptor.py
- Get a list of the Pareto-optimal journeys to all destinations for a given origin and a departure time using McRAPTORpyraptor/query_range_mcraptor.py
- Get a list of Pareto-optimal journeys to all destinations for a given origin and a departure time window using McRAPTOR
Installation
Install from PyPi using pip install pyraptor
or clone this repository and install from source using pip.
Example usage
1. Create timetable from GTFS
python pyraptor/gtfs/timetable.py -d "20211201" -a NS --icd
2. Run (range) queries on timetable
Quering on the timetable to get the best journeys can be done using several implementations.
RAPTOR query
RAPTOR returns a single journey with the earliest arrival time given the query time.
Examples
python pyraptor/query_raptor.py -or "Arnhem Zuid" -d "Oosterbeek" -t "08:30:00"
python pyraptor/query_raptor.py -or "Breda" -d "Amsterdam Centraal" -t "08:30:00"
rRAPTOR query
rRAPTOR returns a set of best journeys with a given query time range. Journeys that are dominated by other journeys in the time range are removed.
Examples
python pyraptor/query_range_raptor.py -or "Arnhem Zuid" -d "Oosterbeek" -st "08:00:00" -et "08:30:00"
python pyraptor/query_range_raptor.py -or "Breda" -d "Amsterdam Centraal" -st "08:00:00" -et "08:30:00"
McRaptor query
McRaptor returns a set of Pareto-optimal journeys given multiple criterions, i.e. earliest arrival time, fare and number of trips.
Examples
python pyraptor/query_mcraptor.py -or "Breda" -d "Amsterdam Centraal" -t "08:30:00"
python pyraptor/query_mcraptor.py -or "Vlissingen" -d "Akkrum" -t "08:30:00"
python pyraptor/query_mcraptor.py -or "Obdam" -d "Akkrum" -t "08:30:00" -r 7
rMcRaptor query
Range version of McRaptor, i.e. it returns a set of Pareto-optimal journeys within a departure time window.
Examples
python pyraptor/query_range_mcraptor.py -or "Breda" -d "Amsterdam Centraal" -st "08:15:00" -et "08:30:00"
python pyraptor/query_range_mcraptor.py -or "Vlissingen" -d "Akkrum" -st "08:15:00" -et "08:30:00"
python pyraptor/query_range_mcraptor.py -or "Obdam" -d "Akkrum" -st "08:00:00" -et "09:00:00"
Notes
- The current version doesn't implement target pruning as we are interested in efficiently querying all targets/destinations after running RAPTOR algorithm.
References
Round-Based Public Transit Routing, Microsoft.com, Daniel Delling et al
Raptor, another journey planning algorithm, Linus Norton
Dutch GTFS feed, Transit Feeds
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyraptor-1.3.10.tar.gz
.
File metadata
- Download URL: pyraptor-1.3.10.tar.gz
- Upload date:
- Size: 20.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/35.0 requests/2.28.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.64.0 importlib-metadata/4.12.0 keyring/23.7.0 rfc3986/2.0.0 colorama/0.4.5 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7c4602e0cdbea3e8c5f34f8b1c3715a06bc296c44719b33e2e1fc3783596e2ea |
|
MD5 | a7e98293a3194b86931a6a1471ad9826 |
|
BLAKE2b-256 | 6881b0c1ba4019c992a7e703c127139e6bd6832e814dcfcc9deb0506c09b9269 |
File details
Details for the file pyraptor-1.3.10-py3-none-any.whl
.
File metadata
- Download URL: pyraptor-1.3.10-py3-none-any.whl
- Upload date:
- Size: 26.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/35.0 requests/2.28.1 requests-toolbelt/0.9.1 urllib3/1.26.10 tqdm/4.64.0 importlib-metadata/4.12.0 keyring/23.7.0 rfc3986/2.0.0 colorama/0.4.5 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4acf62a921b8d3a0bec45ab20d366a85296192fbde0789a814143b6ab5d1da1 |
|
MD5 | 76284a425b15747bb331b562bdbebb08 |
|
BLAKE2b-256 | 26c57d7a52d38092c2115484a87ac7c73134751b6c28633c55ab9e3c85a43170 |