pyreaddbc package
Project description
pyreaddbc
pyreaddbc is a Python library for working with DBase database file. Legacy systems from the Brazilian Ministry of Health still uses DBF and DBC formats to Publicize data. This package was developed to help PySUS to extract data from these formats into more modern ones. Pyreaddbc can also be used to convert DBC files from any other source."
Installation
You can install pyreaddbc using pip:
pip install pyreaddbc
Usage
Reading DBC Files
Extracting the DBF from a DBC may require to specify the encoding of the original data, if known.
import pyreaddbc
dfs = pyreaddbc.read_dbc("LTPI2201.dbc", encoding="iso-8859-1")
Exporting to CSV.GZ
To export a DataFrame to a compressed CSV file (CSV.GZ), you can use pandas:
import pyreaddbc
df = pyreaddbc.read_dbc("./LTPI2201.dbc", encoding="iso-8859-1")
df.to_csv("LTPI2201.csv.gz", compression="gzip", index=False)
Exporting to Parquet
To export a DataFrame to a Parquet file, you can use the pyarrow
library:
import pyreaddbc
import pyarrow.parquet as pq
import pandas as pd
from pathlib import Path
# Read DBC file and convert to DataFrame
df = pyreaddbc.read_dbc("./LTPI2201.dbc", encoding="iso-8859-1")
# Export to CSV.GZ
df.to_csv("LTPI2201.csv.gz", compression="gzip", index=False)
# Export to Parquet
pq.write_table(pa.Table.from_pandas(df), "parquets/LTPI2201.parquet")
# Read the Parquet files and decode DataFrame columns
parquet_dir = Path("parquets")
parquets = parquet_dir.glob("*.parquet")
chunks_list = [
pd.read_parquet(str(f), engine='fastparquet') for f in parquets
]
# Concatenate DataFrames
df_parquet = pd.concat(chunks_list, ignore_index=True)
License
GNU Affero General Public License (AGPL-3.0)
This license ensures that the software remains open-source and free to use, modify, and distribute while requiring that any changes or enhancements made to the codebase are also made available to the community under the same terms.
Acknowledge============
This program decompresses .dbc files to .dbf. This code is based on the work of Mark Adler madler@alumni.caltech.edu (zlib/blast), Pablo Fonseca (https://github.com/eaglebh/blast-dbf).
PySUS has further extended and adapted this code to create pyreaddbc. The original work of Mark Adler and Pablo Fonseca is much appreciated for its contribution to this project.
Note: pyreaddbc is maintained with funding from AlertaDengue.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyreaddbc-1.2.0.tar.gz
.
File metadata
- Download URL: pyreaddbc-1.2.0.tar.gz
- Upload date:
- Size: 57.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.6.1 CPython/3.11.5 Linux/6.2.0-32-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a4733ceeeec2409829e281e738d69e063f5dbdd38b05fb6254d7e8454a0fe80 |
|
MD5 | 40a43ecbe08c8d50ef1707675a0ebda9 |
|
BLAKE2b-256 | 8814bd7247fb5882fa5834b00ae33799c26941a5db9985beecabcc9c375dd231 |
File details
Details for the file pyreaddbc-1.2.0-cp311-cp311-manylinux_2_37_x86_64.whl
.
File metadata
- Download URL: pyreaddbc-1.2.0-cp311-cp311-manylinux_2_37_x86_64.whl
- Upload date:
- Size: 64.7 kB
- Tags: CPython 3.11, manylinux: glibc 2.37+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.6.1 CPython/3.11.5 Linux/6.2.0-32-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 48446cbd497da0b4ec2ad272c050cfad366844af5da8fd7113851c8856e40ace |
|
MD5 | 6d517a5be942cf43da9def8c4b0243a0 |
|
BLAKE2b-256 | 08d4b4a5d5e0354e966d51bbce00be0df67dedd797d76808c152b90af7c6fac3 |