Skip to main content

Create mixed reality visualisations in Jupyter Notebooks

Project description

pyReality

Create mixed reality visualisations in Jupyter Notebooks

Rapid Mixed Reality Visualisations

pyReality makes it easy to create mixed reality data visualisations in Jupyter Notebooks. It leverages the capabilities of Jupyter Notebooks to let users modify the data visualisation using their desktop computer while they view it using a head-mounted display (HMD). Currently, pyReality provides two visualisation types i.e. 3D scatterplots and 3D bar charts. More visualisations will be added later. pyReality makes it easy to rapidly create mixed reality visualisations without having to use multiple software to model and render.

Setup pyReality

The easiest way to get started is to install the package in your Jupyter Notebook by running the following command:

!pip install pyreality

Once installed, you can include visualisation funtions using the following command:

from pyreality import pyRealityBar, pyRealityScatter, pyRealityPlot, pyRealityScatterPro

Create Visualisations

With the current version of pyReality you can create the following types of visualisations:

  1. Immersive 3D Scatterplot
  2. 3D Bar Chart
  3. 3D Scatterplot

Immersive 3D Scatterplot

The immersive scatterplot is based on BabylonJs, performant and has an immserive AR component that lets you view the data visualisation in your surroundings. The immersive scatterplot can be created using the following command:

pyRealityImmersiveScatter(df, title, color, size)
Parameter Description
df The dataframe containing input data
title Title for the visualisation and data visualisation
color One of the three colors i.e. red, green, blue
size You can optionally assign a size (<4). Default is 2.

Here is an example code to create a immersive scatterplot using pyReality:

from pyreality import pyRealityImmersiveScatter
import pandas as pd # To open CSV

df = pd.read_csv("./yearly_data.csv") # The CSV is structured as year,t1,t2,t3,t4,t5,t6 e.g. row 1: 2017,29,29,28,27,27,26,26,26 

pyRealityImmersiveScatter(df, "Yearly Data", "red", 2)

3D Bar Chart

The 3D bar chart can be created using the following command:

pyRealityBar(df, title, encodingX, encodingY, encodingZ, encodingColor)
Parameter Description
df The dataframe containing input data
title Title for the visualisation and data visualisation
encodingX Dictionary with field, timeUnit, type
encodingY Dictionary with field, axis, type, numberFormat
encodingZ Dictionary with field, type
encodingColor Dictionary with field, type, scale, legend, numberFormat

Here is an example code to create a 3D bar graph using pyReality:

from pyreality import pyRealityBar
import pandas as pd # To process the data

df = pd.read_csv("./vax.csv") # The CSV is structured as Entity,Code,Day,total_vaccinations e.g. Argentina,ARG,2021-03-11,1919074
processdate = lambda dat: remLastThree(dat) # Lambda function applies to all cells in a column
cleandf = pd.DataFrame(df.Day.apply(processdate)) # .apply() the function to all cells
df['Day'] = cleandf['Day']
df = df.groupby(['Day','Code','Entity'],as_index=False).agg({'total_vaccinations': 'sum'})
dfUK = df[df.Entity == 'United Kingdom']
dfUS = df[df.Entity == 'United States']
dfGermany = df[df.Entity == 'Germany']
dfFrance = df[df.Entity == 'France']
dfSweden = df[df.Entity == 'Sweden']
dfCountries = pd.concat([dfUK, dfUS, dfSweden, dfFrance, dfGermany], ignore_index=True, sort=False)
dfCountries.columns = ['Month', 'Code', 'Country', 'Vaccinations']
del dfCountries['Code']

encodingX = {
    "field": "Month",
    "timeUnit": "month",
    "type": "temporal"
}

encodingY = {
    "field": "Vaccinations",
    "type": "quantitative",
    "axis": {
        "face": "back"
    },
    "numberFormat": ",.2r"
}
encodingZ = {
    "field": "Country",
    "type": "nominal"
}
encodingColor = {
    "field": "Vaccinations",
    "type": "quantitative",
    "scale": {
        "scheme": "interpolateInferno"
    },
    "legend": {
        "orient": "left"
    },
    "numberFormat": ",.2r"
}

pyRealityBar(dfCountries, "Vaccinations", encodingX, encodingY, encodingZ, encodingColor)

3D Scatterplot

The 3D scatterplot can be created using the following command:

pyRealityScatter(df, title, encodingX, encodingY, encodingZ, encodingColor)
Parameter Description
df The dataframe containing input data
title Title for the visualisation and data visualisation
encodingX Dictionary with field, timeUnit, type
encodingY Dictionary with field, axis, type, numberFormat
encodingZ Dictionary with field, type
encodingColor Dictionary with field, type, scale, legend, numberFormat

Here is an example code to create a 3D bar graph using pyReality:

from pyreality import pyRealityScatter
import pandas as pd # To process the data

df = pd.read_csv("./vax.csv") # The CSV is structured as Entity,Code,Day,total_vaccinations e.g. Argentina,ARG,2021-03-11,1919074
processdate = lambda dat: remLastThree(dat) # Lambda function applies to all cells in a column
cleandf = pd.DataFrame(df.Day.apply(processdate)) # .apply() the function to all cells
df['Day'] = cleandf['Day']
df = df.groupby(['Day','Code','Entity'],as_index=False).agg({'total_vaccinations': 'sum'})
dfUK = df[df.Entity == 'United Kingdom']
dfUS = df[df.Entity == 'United States']
dfGermany = df[df.Entity == 'Germany']
dfFrance = df[df.Entity == 'France']
dfSweden = df[df.Entity == 'Sweden']
dfCountries = pd.concat([dfUK, dfUS, dfSweden, dfFrance, dfGermany], ignore_index=True, sort=False)
dfCountries.columns = ['Month', 'Code', 'Country', 'Vaccinations']
del dfCountries['Code']

encodingX = {
    "field": "Month",
    "timeUnit": "month",
    "type": "temporal"
}

encodingY = {
    "field": "Vaccinations",
    "type": "quantitative",
    "axis": {
        "face": "back"
    },
    "numberFormat": ",.2r"
}
encodingZ = {
    "field": "Country",
    "type": "nominal"
}
encodingColor = {
    "field": "Vaccinations",
    "type": "quantitative",
    "scale": {
        "scheme": "interpolateInferno"
    },
    "legend": {
        "orient": "left"
    },
    "numberFormat": ",.2r"
}

pyRealityScatter(dfCountries, "Vaccinations", encodingX, encodingY, encodingZ, encodingColor)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyreality-0.0.3.tar.gz (4.1 kB view details)

Uploaded Source

Built Distribution

pyreality-0.0.3-py3-none-any.whl (4.6 kB view details)

Uploaded Python 3

File details

Details for the file pyreality-0.0.3.tar.gz.

File metadata

  • Download URL: pyreality-0.0.3.tar.gz
  • Upload date:
  • Size: 4.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.7

File hashes

Hashes for pyreality-0.0.3.tar.gz
Algorithm Hash digest
SHA256 4299982fffc423f642450e9a77cf6765665237f62a684b43db5b90443ef894f2
MD5 55c632fa387898adedb4077160f30c6d
BLAKE2b-256 32db1413ab8ddb909993cb4a611a984a89c3651db0762486204709a7aa993115

See more details on using hashes here.

File details

Details for the file pyreality-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: pyreality-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 4.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.7

File hashes

Hashes for pyreality-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 2254878b211f7f56fa512fdc6b33267344a1f79f3d084a468057b0d056e90c9d
MD5 27e05e6771e2fedac847e490e5ddb47d
BLAKE2b-256 349df18e464a0020fcfd10ee0608d26898d59a8101d85d21fd74fe2fccdc79df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page