Skip to main content

Create mixed reality visualisations in Jupyter Notebooks

Project description

pyReality

Create mixed reality visualisations in Jupyter Notebooks

Rapid Mixed Reality Visualisations

pyReality makes it easy to create mixed reality data visualisations in Jupyter Notebooks. It leverages the capabilities of Jupyter Notebooks to let users modify the data visualisation using their desktop computer while they view it using a head-mounted display (HMD). Currently, pyReality provides two visualisation types i.e. 3D scatterplots and 3D bar charts. More visualisations will be added later. pyReality makes it easy to rapidly create mixed reality visualisations without having to use multiple software to model and render.

Setup pyReality

The easiest way to get started is to install the package in your Jupyter Notebook by running the following command:

!pip install pyreality

Once installed, you can include visualisation funtions using the following command:

from pyreality import pyRealityBar, pyRealityScatter, pyRealityPlot, pyRealityScatterPro

Create Visualisations

With the current version of pyReality you can create the following types of visualisations:

  1. Immersive 3D Scatterplot
  2. 3D Bar Chart
  3. 3D Scatterplot

Immersive 3D Scatterplot

The immersive scatterplot is based on BabylonJs, performant and has an immserive AR component that lets you view the data visualisation in your surroundings. The immersive scatterplot can be created using the following command:

pyRealityImmersiveScatter(df, title, color, size)
Parameter Description
df The dataframe containing input data
title Title for the visualisation and data visualisation
color One of the three colors i.e. red, green, blue
size You can optionally assign a size (<4). Default is 2.

Here is an example code to create a immersive scatterplot using pyReality:

from pyreality import pyRealityImmersiveScatter
import pandas as pd # To open CSV

df = pd.read_csv("./yearly_data.csv") # The CSV is structured as year,t1,t2,t3,t4,t5,t6 e.g. row 1: 2017,29,29,28,27,27,26,26,26 

pyRealityImmersiveScatter(df, "Yearly Data", "red", 2)

3D Bar Chart

The 3D bar chart can be created using the following command:

pyRealityBar(df, title, encodingX, encodingY, encodingZ, encodingColor)
Parameter Description
df The dataframe containing input data
title Title for the visualisation and data visualisation
encodingX Dictionary with field, timeUnit, type
encodingY Dictionary with field, axis, type, numberFormat
encodingZ Dictionary with field, type
encodingColor Dictionary with field, type, scale, legend, numberFormat

Here is an example code to create a 3D bar graph using pyReality:

from pyreality import pyRealityBar
import pandas as pd # To process the data

df = pd.read_csv("./vax.csv") # The CSV is structured as Entity,Code,Day,total_vaccinations e.g. Argentina,ARG,2021-03-11,1919074
processdate = lambda dat: remLastThree(dat) # Lambda function applies to all cells in a column
cleandf = pd.DataFrame(df.Day.apply(processdate)) # .apply() the function to all cells
df['Day'] = cleandf['Day']
df = df.groupby(['Day','Code','Entity'],as_index=False).agg({'total_vaccinations': 'sum'})
dfUK = df[df.Entity == 'United Kingdom']
dfUS = df[df.Entity == 'United States']
dfGermany = df[df.Entity == 'Germany']
dfFrance = df[df.Entity == 'France']
dfSweden = df[df.Entity == 'Sweden']
dfCountries = pd.concat([dfUK, dfUS, dfSweden, dfFrance, dfGermany], ignore_index=True, sort=False)
dfCountries.columns = ['Month', 'Code', 'Country', 'Vaccinations']
del dfCountries['Code']

encodingX = {
    "field": "Month",
    "timeUnit": "month",
    "type": "temporal"
}

encodingY = {
    "field": "Vaccinations",
    "type": "quantitative",
    "axis": {
        "face": "back"
    },
    "numberFormat": ",.2r"
}
encodingZ = {
    "field": "Country",
    "type": "nominal"
}
encodingColor = {
    "field": "Vaccinations",
    "type": "quantitative",
    "scale": {
        "scheme": "interpolateInferno"
    },
    "legend": {
        "orient": "left"
    },
    "numberFormat": ",.2r"
}

pyRealityBar(dfCountries, "Vaccinations", encodingX, encodingY, encodingZ, encodingColor)

3D Scatterplot

The 3D scatterplot can be created using the following command:

pyRealityScatter(df, title, encodingX, encodingY, encodingZ, encodingColor)
Parameter Description
df The dataframe containing input data
title Title for the visualisation and data visualisation
encodingX Dictionary with field, timeUnit, type
encodingY Dictionary with field, axis, type, numberFormat
encodingZ Dictionary with field, type
encodingColor Dictionary with field, type, scale, legend, numberFormat

Here is an example code to create a 3D bar graph using pyReality:

from pyreality import pyRealityScatter
import pandas as pd # To process the data

df = pd.read_csv("./vax.csv") # The CSV is structured as Entity,Code,Day,total_vaccinations e.g. Argentina,ARG,2021-03-11,1919074
processdate = lambda dat: remLastThree(dat) # Lambda function applies to all cells in a column
cleandf = pd.DataFrame(df.Day.apply(processdate)) # .apply() the function to all cells
df['Day'] = cleandf['Day']
df = df.groupby(['Day','Code','Entity'],as_index=False).agg({'total_vaccinations': 'sum'})
dfUK = df[df.Entity == 'United Kingdom']
dfUS = df[df.Entity == 'United States']
dfGermany = df[df.Entity == 'Germany']
dfFrance = df[df.Entity == 'France']
dfSweden = df[df.Entity == 'Sweden']
dfCountries = pd.concat([dfUK, dfUS, dfSweden, dfFrance, dfGermany], ignore_index=True, sort=False)
dfCountries.columns = ['Month', 'Code', 'Country', 'Vaccinations']
del dfCountries['Code']

encodingX = {
    "field": "Month",
    "timeUnit": "month",
    "type": "temporal"
}

encodingY = {
    "field": "Vaccinations",
    "type": "quantitative",
    "axis": {
        "face": "back"
    },
    "numberFormat": ",.2r"
}
encodingZ = {
    "field": "Country",
    "type": "nominal"
}
encodingColor = {
    "field": "Vaccinations",
    "type": "quantitative",
    "scale": {
        "scheme": "interpolateInferno"
    },
    "legend": {
        "orient": "left"
    },
    "numberFormat": ",.2r"
}

pyRealityScatter(dfCountries, "Vaccinations", encodingX, encodingY, encodingZ, encodingColor)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyreality-0.0.5.tar.gz (4.1 kB view details)

Uploaded Source

Built Distribution

pyreality-0.0.5-py3-none-any.whl (4.6 kB view details)

Uploaded Python 3

File details

Details for the file pyreality-0.0.5.tar.gz.

File metadata

  • Download URL: pyreality-0.0.5.tar.gz
  • Upload date:
  • Size: 4.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.7

File hashes

Hashes for pyreality-0.0.5.tar.gz
Algorithm Hash digest
SHA256 0f73b5697b0e5e535485f59c6eff6ff9675357fb868b79ffeb605fa2cff8a9b6
MD5 7411f51eba87e36be3a1d58f5ca039c5
BLAKE2b-256 9fc5618fee184083dfa18dbc053f9548e9633b96abea100ad5c0670cc255afdc

See more details on using hashes here.

File details

Details for the file pyreality-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: pyreality-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 4.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.7

File hashes

Hashes for pyreality-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 ac9848f3bf0a182900cde48cdce63aef7e09586e6ad8b17b2ccbfdad9e234a5f
MD5 d8917212792286abc1835fec22b616e2
BLAKE2b-256 9c569d69034ce29aeff804393036140cfcff4115c0ea9cd525e2776bd8cc7bd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page