Skip to main content

Collaborative filtering recommender system

Project description

PyRecSys
=======

Python Collaborative Filtering

Overview
--------


Features
--------


Installation
------------

To install from [PyPI](https://pypi.python.org/pypi/recsys/), use pip:

$ pip install recsys

Or clone the repo:

$ git clone https://github.com/vlarine/pyrecsys.git
$ cd pyrecsys
$ pip install -r requirements.txt
$ pip install .


Getting Started
---------------


License
-------

Released under the MIT License


References
----------

Collaborative Filtering for Implicit Feedback Datasets.
Yifan Hu. AT&T Labs – Research. Florham Park, NJ 07932.
Yehuda Koren. Yahoo! Research.
[http://yifanhu.net/PUB/cf.pdf](http://yifanhu.net/PUB/cf.pdf)

Ben Frederickson. Fast Python Collaborative Filtering
for Implicit Datasets.
[https://github.com/benfred/implicit](https://github.com/benfred/implicit)

Evgeny Frolov, Ivan Oseledets. Fifty Shades of Ratings: How to Benefit
from a Negative Feedback in Top-N Recommendations Tasks.
[https://arxiv.org/abs/1607.04228](https://arxiv.org/abs/1607.04228)
[https://github.com/Evfro/polara](https://github.com/Evfro/polara)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pyrecsys, version 0.0.3
Filename, size File type Python version Upload date Hashes
Filename, size pyrecsys-0.0.3.tar.gz (6.8 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page