Python Reactor Modeling Tools (PyREMOT)
Project description
Python Reactor Modeling Tools
Python Reactor Modeling Tools (PyREMOT) is an open-source package which can be used for process simulation, optimization, and parameter estimation. The current version consists of homogenous models for steady-state and dynamic conditions.
You can visit dashboard to build model input and load examples!
Installation
You can install this package
pip install PyREMOT
Documentation
The main method is called as:
from PyREMOT import rmtExe
# model inputs
# using dashboard to build model inputs
modelInput = {...}
# run
res = rmtExe(modelInput)
Check component list available in the current version:
from PyREMOT import rmtCom
# display component list
res = rmtCom()
print(res)
PyREMOT UI dashboard conatins some panels as:
1- MODEL SELECTION
2- COMPONENTS
H2;CO2;H2O;CO;CH3OH;DME
this code is automaticly converted to python as:
compList = ["H2","CO2","H2O","CO","CH3OH","DME"]
3- REACTIONS
define reacions as:
CO2 + 3H2 <=> CH3OH + H2O;
CO + H2O <=> H2 + CO2;
2CH3OH <=> DME + H2O
then:
reactionSet = {
"R1":"CO2+3H2<=>CH3OH+H2O",
"R2":"CO+H2O<=>H2+CO2",
"R3":"2CH3OH<=>DME+H2O"
}
In order to define reaction rate expressions, there are two code sections as
a) define parameters:
"RT": x['R_CONST']*x['T'];
"K1": 35.45*math.exp(-1.7069e4/x['RT']);
"K2": 7.3976*math.exp(-2.0436e4/x['RT']);
"K3": 8.2894e4*math.exp(-5.2940e4/x['RT']);
"KH2": 0.249*math.exp(3.4394e4/x['RT']);
"KCO2": 1.02e-7*math.exp(6.74e4/x['RT']);
"KCO": 7.99e-7*math.exp(5.81e4/x['RT']);
"Ln_KP1": 4213/x['T'] - 5.752 * math.log(x['T']) - 1.707e-3*x['T'] + 2.682e-6 * (math.pow(x['T'], 2)) - 7.232e-10*(math.pow(x['T'], 3)) + 17.6;
"KP1": math.exp(x['Ln_KP1']);
"log_KP2": 2167/x['T'] - 0.5194 * math.log10(x['T']) + 1.037e-3*x['T'] - 2.331e-7 * (math.pow(x['T'], 2)) - 1.2777;
"KP2": math.pow(10, x['log_KP2']);
"Ln_KP3": 4019/x['T'] + 3.707 * math.log(x['T']) - 2.783e-3*x['T'] + 3.8e-7 * (math.pow(x['T'], 2)) - 6.56e-4/(math.pow(x['T'], 3)) - 26.64;
"KP3": math.exp(x['Ln_KP3']);
"yi_H2": x['MoFri'][0];
"yi_CO2": x['MoFri'][1];
"yi_H2O": x['MoFri'][2];
"yi_CO": x['MoFri'][3];
"yi_CH3OH": x['MoFri'][4];
"yi_DME": x['MoFri'][5];
"PH2": x['P']*(x['yi_H2'])*1e-5;
"PCO2": x['P']*(x['yi_CO2'])*1e-5;
"PH2O": x['P']*(x['yi_H2O'])*1e-5;
"PCO": x['P']*(x['yi_CO'])*1e-5;
"PCH3OH": x['P']*(x['yi_CH3OH'])*1e-5;
"PCH3OCH3": x['P']*(x['yi_DME'])*1e-5;
"ra1": x['PCO2']*x['PH2'];
"ra2": 1 + (x['KCO2']*x['PCO2']) + (x['KCO']*x['PCO']) + math.sqrt(x['KH2']*x['PH2']);
"ra3": (1/x['KP1'])*((x['PH2O']*x['PCH3OH'])/(x['PCO2']*(math.pow(x['PH2'], 3))));
"ra4": x['PH2O'] - (1/x['KP2'])*((x['PCO2']*x['PH2'])/x['PCO']);
"ra5": (math.pow(x['PCH3OH'], 2)/x['PH2O'])-(x['PCH3OCH3']/x['KP3'])
then converted:
varis0 = {
"RT": lambda x: x['R_CONST']*x['T'],
"K1": lambda x: 35.45*math.exp(-1.7069e4/x['RT']),
"K2": lambda x: 7.3976*math.exp(-2.0436e4/x['RT']),
"K3": lambda x: 8.2894e4*math.exp(-5.2940e4/x['RT']),
"KH2": lambda x: 0.249*math.exp(3.4394e4/x['RT']),
"KCO2": lambda x: 1.02e-7*math.exp(6.74e4/x['RT']),
"KCO": lambda x: 7.99e-7*math.exp(5.81e4/x['RT']),
"Ln_KP1": lambda x: 4213/x['T'] - 5.752 * math.log(x['T']) - 1.707e-3*x['T'] + 2.682e-6 * (math.pow(x['T'], 2)) - 7.232e-10*(math.pow(x['T'], 3)) + 17.6,
"KP1": lambda x: math.exp(x['Ln_KP1']),
"log_KP2": lambda x: 2167/x['T'] - 0.5194 * math.log10(x['T']) + 1.037e-3*x['T'] - 2.331e-7 * (math.pow(x['T'], 2)) - 1.2777,
"KP2": lambda x: math.pow(10, x['log_KP2']),
"Ln_KP3": lambda x: 4019/x['T'] + 3.707 * math.log(x['T']) - 2.783e-3*x['T'] + 3.8e-7 * (math.pow(x['T'], 2)) - 6.56e-4/(math.pow(x['T'], 3)) - 26.64,
"KP3": lambda x: math.exp(x['Ln_KP3']),
"yi_H2": lambda x: x['MoFri'][0],
"yi_CO2": lambda x: x['MoFri'][1],
"yi_H2O": lambda x: x['MoFri'][2],
"yi_CO": lambda x: x['MoFri'][3],
"yi_CH3OH": lambda x: x['MoFri'][4],
"yi_DME": lambda x: x['MoFri'][5],
"PH2": lambda x: x['P']*(x['yi_H2'])*1e-5,
"PCO2": lambda x: x['P']*(x['yi_CO2'])*1e-5,
"PH2O": lambda x: x['P']*(x['yi_H2O'])*1e-5,
"PCO": lambda x: x['P']*(x['yi_CO'])*1e-5,
"PCH3OH": lambda x: x['P']*(x['yi_CH3OH'])*1e-5,
"PCH3OCH3": lambda x: x['P']*(x['yi_DME'])*1e-5,
"ra1": lambda x: x['PCO2']*x['PH2'],
"ra2": lambda x: 1 + (x['KCO2']*x['PCO2']) + (x['KCO']*x['PCO']) + math.sqrt(x['KH2']*x['PH2']),
"ra3": lambda x: (1/x['KP1'])*((x['PH2O']*x['PCH3OH'])/(x['PCO2']*(math.pow(x['PH2'], 3)))),
"ra4": lambda x: x['PH2O'] - (1/x['KP2'])*((x['PCO2']*x['PH2'])/x['PCO']),
"ra5": lambda x: (math.pow(x['PCH3OH'], 2)/x['PH2O'])-(x['PCH3OCH3']/x['KP3'])
}
b) define the final form of reaction rate expressions:
"r1": 1000*x['K1']*(x['ra1']/(math.pow(x['ra2'], 3)))*(1-x['ra3'])*x['CaBeDe'];
"r2": 1000*x['K2']*(1/x['ra2'])*x['ra4']*x['CaBeDe'];
"r3": 1000*x['K3']*x['ra5']*x['CaBeDe']
then converted:
rates0 = {
"r1": lambda x: 1000*x['K1']*(x['ra1']/(math.pow(x['ra2'], 3)))*(1-x['ra3'])*x['CaBeDe'],
"r2": lambda x: 1000*x['K2']*(1/x['ra2'])*x['ra4']*x['CaBeDe'],
"r3": lambda x: 1000*x['K3']*x['ra5']*x['CaBeDe']
}
4- PROPERTIES
feed properties:
# species-concentration [mol/m^3]
SpCoi = [574.8978, 287.4489, 1.15e-02, 287.4489, 1.15e-02, 1.15e-02]
# flowrate @ P & T [m^3/s]
VoFlRa = 0.000228
# pressure [Pa]
P = 5000000
# temperature [K]
T = 523
# process-type [-]
PrTy = "non-iso-thermal"
5- REACTOR
reactor and catalyst characteristics:
# reactor-length [m]
ReLe = 1
# reactor-inner-diameter [m]
ReInDi = 0.0381
# bed-void-fraction [-]
BeVoFr = 0.39
# catalyst bed density [kg/m^3]
CaBeDe = 1171.2
# particle-diameter [m]
PaDi = 0.002
# particle-density [kg/m^3]
CaDe = 1920
# particle-specific-heat-capacity [J/kg.K]
CaSpHeCa = 960
6- HEAT-EXCHANGER
# overall-heat-transfer-coefficient [J/m^2.s.K]
U = 50
# medium-temperature [K]
Tm = 523
7- SOLVER
# ode-solver [-]
ivp = "default"
# display-result [-]
diRe = "True"
After setting all modules, you can find 'model input' in python format in the summary panel. Then, copy the content of this file in your python framework and run it!
You can also find an example on PyREMOT dashboard, load it and then have a look at the summary panel.
Run
As the downloaded python file contains modelInput varibale, you can directly run the model as:
# model input
modelInput = {...}
# start modeling
res = rmtExe(modelInput)
Result Format
For steady-state cases, the modeling result is stored in an array named dataPack:
# res
dataPack = []
dataPack.append({
"modelId": modelId,
"processType": processType,
"successStatus": successStatus,
"computation-time": elapsed,
"dataShape": dataShape,
"labelList": labelList,
"indexList": indexList,
"dataTime": [],
"dataXs": dataXs,
"dataYCons1": dataYs_Concentration_DiLeVa,
"dataYCons2": dataYs_Concentration_ReVa,
"dataYTemp1": dataYs_Temperature_DiLeVa,
"dataYTemp2": dataYs_Temperature_ReVa,
"dataYs": dataYs_All
})
And for dynamic cases,
# res
resPack = {
"computation-time": elapsed,
"dataPack": dataPack
}
Concentration results:
dataYCons1: dimensionless concentration
dataYCons2: concentraton [mol/m^3.s]
Temperature results:
dataYTemp1: dimensionless temperature
dataYTemp2: Temperature [K]
All modeling results is also saved in dataYs.
FAQ
For any question, you can conatct me on LinkedIn or Twitter.
Authors
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file PyREMOT-1.0.17.tar.gz
.
File metadata
- Download URL: PyREMOT-1.0.17.tar.gz
- Upload date:
- Size: 176.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a8afa4cb87e3d9ad1f3001fa7f61cd7ee0c96878de1eb4492e89b62030c88a32 |
|
MD5 | 5ed53260d13b01971581e489edf5bcf1 |
|
BLAKE2b-256 | cafb67ad7824ae88160d1964c94035ffe370b6ae0b7e57d1d36c6262d6bd220b |
File details
Details for the file PyREMOT-1.0.17-py3-none-any.whl
.
File metadata
- Download URL: PyREMOT-1.0.17-py3-none-any.whl
- Upload date:
- Size: 239.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d66720d94352e05655aaa54842c8469a891b9b0a78197cc61794194242cb4fe8 |
|
MD5 | 2d3a2cf309fee5228bb79fc847598b9a |
|
BLAKE2b-256 | f272cdfc3ff25377b21b770dc5d74e750f064bea2f6652a9c2d42909128964a5 |