Skip to main content

Functional-style Streams library for processing collections and querying files (json, toml, yaml, xml, csv, tsv). Provides easy integration with itertools.

Project description

Pyrio

PYRIO

Python 3.x tests codecov PyPI Downloads


Functional-style Streams API library

Facilitates processing of collections and iterables using fluent APIs.
Gives access to files of various types (json, toml, yaml, xml, csv and tsv) for reading and executing complex queries
Provides easy integration with itertools
(NB: Commonly used itertools 'recipes' are included as part of the main APIs)

How to use

Creating streams

  • stream from iterable
Stream([1, 2, 3])
  • from variadic arguments
Stream.of(1, 2, 3)
  • empty stream
Stream.empty()
  • infinite ordered stream
Stream.iterate(0, lambda x: x + 1)
  • infinite unordered stream
import random

Stream.generate(lambda: random.random())
  • infinite stream with given value
Stream.constant(42)
  • concat
    (concatenate several streams together or add new streams to the current one)
Stream.concat((1, 2, 3), [5, 6]).to_list()
Stream.of(1, 2, 3).concat([4, 5]).to_list()
  • prepend
    (prepend iterable to current stream)
Stream([2, 3, 4]).prepend(0, 1).to_list()

Intermediate operations

  • filter
Stream([1, 2, 3]).filter(lambda x: x % 2 == 0)
  • map
Stream([1, 2, 3]).map(str).to_list()
Stream([1, 2, 3]).map(lambda x: x + 5).to_list()
  • filter_map
    (filter out all None or falsy values (if falsy=True) and applies mapper function to the elements of the stream)
Stream.of(None, "foo", "", "bar", 0, []).filter_map(str.upper, falsy=True).to_list()
["FOO", "BAR"]
  • flat_map
    (map each element of the stream and yields the elements of the produced iterators)
Stream([[1, 2], [3, 4], [5]]).flat_map(lambda x: Stream(x)).to_list()
[1, 2, 3, 4, 5]
  • flatten
Stream([[1, 2], [3, 4], [5]]).flatten().to_list()
[1, 2, 3, 4, 5]
  • reduce
    (returns Optional)
Stream([1, 2, 3]).reduce(lambda acc, val: acc + val, identity=3).get()
  • peek
    (perform the provided operation on each element of the stream without consuming it)
(Stream([1, 2, 3, 4])
    .filter(lambda x: x > 2)
    .peek(lambda x: print(f"{x} ", end=""))
    .map(lambda x: x * 20)
    .to_list())
  • view
    (provides access to a selected part of the stream)
Stream([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(start=1, stop=-3, step=2).to_list()
[2, 4, 6]
  • distinct
    (returns a stream with the distinct elements of the current one)
Stream([1, 1, 2, 2, 2, 3]).distinct().to_list()
  • skip
    (discards the first n elements of the stream and returns a new stream with the remaining ones)
Stream.iterate(0, lambda x: x + 1).skip(5).limit(5).to_list()
  • limit / head
    (returns a stream with the first n elements, or fewer if the underlying iterator ends sooner)
Stream([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).limit(3).to_tuple()
Stream([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).head(3).to_tuple()
  • tail
    (returns a stream with the last n elements, or fewer if the underlying iterator ends sooner)
Stream([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).tail(3).to_tuple()
  • take_while
    (returns a stream that yields elements based on a predicate)
Stream.of(1, 2, 3, 4, 5, 6, 7, 2, 3).take_while(lambda x: x < 5).to_list()
[1, 2, 3, 4]
  • drop_while
    (returns a stream that skips elements based on a predicate and yields the remaining ones)
Stream.of(1, 2, 3, 5, 6, 7, 2).drop_while(lambda x: x < 5).to_list()
[5, 6, 7, 2]
  • sorted
    (sorts the elements of the current stream according to natural order or based on the given comparator;
    if 'reverse' flag is True, the elements are sorted in descending order)
(Stream.of((3, 30), (2, 30), (2, 20), (1, 20), (1, 10))
    .sorted(lambda x: (x[0], x[1]), reverse=True)
    .to_list())
[(3, 30), (2, 30), (2, 20), (1, 20), (1, 10)]

Terminal operations

Collectors

  • collecting result into list, tuple, set
Stream([1, 2, 3]).to_list()
Stream([1, 2, 3]).to_tuple()
Stream([1, 2, 3]).to_set()
  • into dict
class Foo:
    def __init__(self, name, num):
        self.name = name
        self.num = num
        
Stream([Foo("fizz", 1), Foo("buzz", 2)]).to_dict(lambda x: (x.name, x.num))
{"fizz": 1, "buzz": 2}

In the case of a collision (duplicate keys) the 'merger' functions indicates which entry should be kept

collection = [Foo("fizz", 1), Foo("fizz", 2), Foo("buzz", 2)]
Stream(collection).to_dict(collector=lambda x: (x.name, x.num), merger=lambda old, new: old)
{"fizz": 1, "buzz": 2}
  • alternative for working with collectors is using the collect method
Stream([1, 2, 3]).collect(tuple)
Stream.of(1, 2, 3).collect(list)
Stream.of(1, 1, 2, 2, 2, 3).collect(set)
Stream.of(1, 2, 3, 4).collect(dict, lambda x: (str(x), x * 10))
  • grouping
Stream("AAAABBBCCD").group_by(collector=lambda key, grouper: (key, len(grouper)))
{"A": 4, "B": 3, "C": 2, "D": 1}
coll = [Foo("fizz", 1), Foo("fizz", 2), Foo("fizz", 3), Foo("buzz", 2), Foo("buzz", 3), Foo("buzz", 4), Foo("buzz", 5)]
Stream(coll).group_by(
    classifier=lambda obj: obj.name,
    collector=lambda key, grouper: (key, [(obj.name, obj.num) for obj in list(grouper)]))
{
  "fizz": [("fizz", 1), ("fizz", 2), ("fizz", 3)],
  "buzz": [("buzz", 2), ("buzz", 3), ("buzz", 4), ("buzz", 5)],
}

Other terminal operations

  • for_each
Stream([1, 2, 3, 4]).for_each(lambda x: print(f"{'#' * x} ", end=""))
  • count
    (returns the count of elements in the stream)
Stream([1, 2, 3, 4]).filter(lambda x: x % 2 == 0).count()
  • sum
Stream.of(1, 2, 3, 4).sum() 
  • find_first
    (search for an element of the stream that satisfies a predicate, returns an Optional with the first found value, if any, or None)
Stream.of(1, 2, 3, 4).filter(lambda x: x % 2 == 0).find_first().get()
  • find_any
    (search for an element of the stream that satisfies a predicate, returns an Optional with some of the found values, if any, or None)
Stream.of(1, 2, 3, 4).filter(lambda x: x % 2 == 0).find_any().get()
  • any_match
    (returns whether any elements of the stream match the given predicate)
Stream.of(1, 2, 3, 4).any_match(lambda x: x > 2)
  • all_match
    (returns whether all elements of the stream match the given predicate)
Stream.of(1, 2, 3, 4).all_match(lambda x: x > 2)
  • none_match
    (returns whether no elements of the stream match the given predicate)
Stream.of(1, 2, 3, 4).none_match(lambda x: x < 0)
  • min
    (returns Optional with the minimum element of the stream)
Stream.of(2, 1, 3, 4).min().get()
  • max
    (returns Optional with the maximum element of the stream)
Stream.of(2, 1, 3, 4).max().get()
  • compare_with
    (compares linearly the contents of two streams based on a given comparator)
fizz = Foo("fizz", 1)
buzz = Foo("buzz", 2)
Stream([buzz, fizz]).compare_with(Stream([fizz, buzz]), lambda x, y: x.num == y.num)
  • quantify
    (count how many of the elements are Truthy or evaluate to True based on a given predicate)
Stream([2, 3, 4, 5, 6]).quantify(predicate=lambda x: x % 2 == 0)

Itertools integration

Invoke use method by passing the itertools function and it's arguments as **kwargs

import itertools
import operator

Stream([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).use(itertools.islice, start=3, stop=8)
Stream.of(1, 2, 3, 4, 5).use(itertools.accumulate, func=operator.mul).to_list()
Stream(range(3)).use(itertools.permutations, r=3).to_list()

Itertools 'recipes'

Invoke the 'recipes' described here as stream methods and pass required key-word arguments

Stream([1, 2, 3]).ncycles(count=2).to_list()
Stream.of(2, 3, 4).take_nth(10, default=66).get()
Stream(["ABC", "D", "EF"]).round_robin().to_list()

Querying files with FileStream

  • working with json, toml, yaml, xml files
FileStream("path/to/file").map(lambda x: f"{x.key}=>{x.value}").to_tuple()
(
  "abc=>xyz", 
  "qwerty=>42",
)
from operator import itemgetter

(FileStream("path/to/file")
    .filter(lambda x: "a" in x.key)
    .map(lambda x: (x.key, sum(x.value) * 10))
    .sorted(itemgetter(1), reverse=True)
    .map(lambda x: f"{str(x[1])}::{x[0]}")
    .to_list()) 
["230::xza", "110::abba", "30::a"]

FileStream reads data as series of Item objects with key/value attributes.

  • querying csv and tsv files
    (each row is read as a dict with keys taken from the header row)
FileStream("path/to/file").map(lambda x: f"fizz: {x['fizz']}, buzz: {x['buzz']}").to_tuple() 
(
  "fizz: 42, buzz: 45",
  "fizz: aaa, buzz: bbb",
)
from operator import itemgetter

FileStream("path/to/file").map(itemgetter('fizz', 'buzz')).to_tuple()
(('42', '45'), ('aaa', 'bbb'))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyrio-1.1.1.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

pyrio-1.1.1-py3-none-any.whl (14.4 kB view details)

Uploaded Python 3

File details

Details for the file pyrio-1.1.1.tar.gz.

File metadata

  • Download URL: pyrio-1.1.1.tar.gz
  • Upload date:
  • Size: 14.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Linux/6.8.0-48-generic

File hashes

Hashes for pyrio-1.1.1.tar.gz
Algorithm Hash digest
SHA256 84e94a19e418aaf97afb55e8ae71c3e83e4896bf625301725d24b4b0a8f85a32
MD5 bb0f09d6c3a3b037579072b2deec9e82
BLAKE2b-256 b7150b47a505995d6beffa293a49054a234085bb65946f65862b9e318bfab5ed

See more details on using hashes here.

File details

Details for the file pyrio-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: pyrio-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 14.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Linux/6.8.0-48-generic

File hashes

Hashes for pyrio-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bf3372b43731653f79119f5d3946e66c91b62004b9e6b252e85954649ae72e3a
MD5 1e678c4ce60365d9c274db09035efbb4
BLAKE2b-256 deb2f47211eb511a025b2590c79e0b5670cb88125c414a961919c71d7ecbd27c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page