Tools for geochemical data analysis.
Project description
pyrolite
Install
pip install pyrolite
Build Status
master | develop |
---|---|
Maintainer: Morgan Williams (morgan.williams at csiro.au)
Usage Examples
Note: Examples for compositional data yet to come.
Elements and Oxides
Index Generators
All Elements up to U
>>> import pyrolite.geochem.common_elements as ce
>>> ce() # string return
['H', 'He', 'Li', 'Be', ..., 'Th', 'Pa', 'U']
>>> ce(output='formula') # periodictable.core.Element return
[H, He, Li, Be, ..., Th, Pa, U]
Oxides for Elements with Positive Charges (up to U)
>>> import pyrolite.geochem.common_oxides as co
>>> co() # string return
['H2O', 'He2O', 'HeO', 'Li2O', 'Be2O', 'BeO', 'B2O', 'BO', 'B2O3', ...,
'U2O', 'UO', 'U2O3', 'UO2', 'U2O5', 'UO3']
>>> co() # periodictable.formulas.Formula return
[H, He, Li, Be, ..., Th, Pa, U]
REE Elements
>>> from pyrolite.geochem import REE
>>> REE()
['La', 'Ce', 'Pr', 'Nd', 'Pm', ..., 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu']
Data Cleaning
Some simple utilities for cleaning up data tables are included. Assuming you're importing data into pd.DataFrame
:
import pandas as pd
df = pd.DataFrame({'label':'basalt', 'ID': 19076,
'mgo':20.0, 'SIO2':30.0, 'cs':5.0, 'TiO2':2.0},
index=[0])
>>> df.columns
Index(['label', 'ID', 'mgo', 'SIO2', 'cs', 'TiO2'], dtype='object')
from pyrolite.util.text import titlecase
from pyrolite.geochem import tochem
>>> df.columns = [titlecase(h, abbrv=['ID']) for h in df.columns]
Index(['Label', 'ID', 'Mgo', 'Sio2', 'Cs', 'Tio2'], dtype='object')
>>> df.columns = tochem(df.columns)
Index(['Label', 'ID', 'MgO', 'SiO2', 'Cs', 'TiO2'], dtype='object')
Normalisation
A selection of reference compositions are included:
>>> from pyrolite.normalisation import ReferenceCompositions
>>> refcomp = ReferenceCompositions()
{
'Chondrite_PON': Model of Chondrite (Palme2014),
'D-DMM_WH': Model of DepletedDepletedMORBMantle (Workman2005),
'DMM_WH': Model of DepletedMORBMantle (Workman2005),
'DM_SS': Model of DepletedMantle (Salters2004),
'E-DMM_WH': Model of EnrichedDepletedMORBMantle (Workman2005),
'PM_PON': Model of PrimitiveMantle (Palme2014)
}
>>> CH = refcomp['Chondrite_PON']
>>> PM = refcomp['PM_PON']
>>> CH[REE()]
value unc_2sigma units
var
La 0.2414 0.014484 ppm
Ce 0.6194 0.037164 ppm
...
Tm 0.02609 0.001565 ppm
Yb 0.1687 0.010122 ppm
Lu 0.02503 0.001502 ppm
The normalize
method can be used to normalise dataframes to a given reference (e.g. for spiderplots):
>>> from pyrolite.plot import spiderplot
>>> refcomp = ReferenceCompositions()
>>> CH = refcomp['Chondrite_PON']
>>> DMM = refcomp['DMM_WH']
>>>
>>> df = DMM.data.loc[REE(), ['value']]
>>> spiderplot(CH.normalize(df), label=f'{DMM.Reference}')
More reference compositions will soon be included (e.g. Sun and McDonough, 1989).
Data Density Plots
Log-spaced data density plots can be useful to visualise geochemical data density:
>>> from pyrolite.plot import densityplot
>>> # with a dataframe <df> containing columns Nb/Yb and Th/Yb
>>> densityplot(df, components=['Nb/Yb', 'Th/Yb'], bins=100, logspace=True)
Below is an example of ocean island basalt data (GEOROC compilation), plotted in a 'Pearce' discrimination diagram:
More on these discrimination diagrams: Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14–48.
Dimensional Reduction using Orthagonal Polynomials ('Lambdas')
Derivation of weight values for deconstructing a smooth function into orthagonal polynomial components (e.g. for the REE):
>>> from pyrolite.geochem import lambda_lnREE
>>> refc = 'Chondrite_PON'
>>> # with a dataframe <df> containing REE data in columns La, ..., Lu
>>> lambdas = lambda_lnREE(df, exclude=['Pm'], norm_to=refc)
![Orthagonal Polynomial Example](https://raw.githubusercontent.com/morganjwilliams/pyrolite/develop /docs/resources/LambdaExample.png)
For more on using orthagonal polynomials to describe geochemical pattern data, see: O’Neill, H.S.C., 2016. The Smoothness and Shapes of Chondrite-normalized Rare Earth Element Patterns in Basalts. J Petrology 57, 1463–1508.
Classification
Some simple discrimination methods are implemented, including the Total Alkali-Silica (TAS) classification:
>>> from pyrolite.classification import Geochemistry
>>>
>>> cm = Geochemistry.TAS()
>>> df.TotalAlkali = df.Na2O + df.K2O
>>> df['TAS'] = cm.classify(df)
This classifier can be quickly added to a bivariate plot, assuming you have data in a pandas DataFrame:
>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>>
>>> df['TotalAlkali'] = df['Na2O'] + df['K2O']
>>>
>>> fig, ax = plt.subplots(1, figsize=(6, 4))
>>> cm.add_to_axes(ax, facecolor='0.9', edgecolor='k',
>>> linewidth=0.5, zorder=-1)
>>> classnames = cm.clsf.fclasses + ['none']
>>> df['TAScolors'] = df['TAS'].map(lambda x: classnames.index(x))
>>> ax.scatter(df.SiO2, df.TotalAlkali, c=df.TAScolors,
>>> alpha=0.5, marker='D', s=8, cmap='tab20c')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyrolite-0.0.13.tar.gz
.
File metadata
- Download URL: pyrolite-0.0.13.tar.gz
- Upload date:
- Size: 126.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e8f3f221b0bf4397ff33568ebfe124f4367f06c9292d78d806d07c1216f1923 |
|
MD5 | 87c7db3eea037460829b0ed5864fa313 |
|
BLAKE2b-256 | 6b0cc8806de1c05d2a4d5072c6c2e94259ab64e5f76454e3323051a861d5c463 |
File details
Details for the file pyrolite-0.0.13-py3-none-any.whl
.
File metadata
- Download URL: pyrolite-0.0.13-py3-none-any.whl
- Upload date:
- Size: 131.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e9119dee741c522bf91b122c1324c8d47cad6747e772d396b03c69fe3305f81 |
|
MD5 | c445feb653764e49f00261398a2bd0ba |
|
BLAKE2b-256 | e9aeac9babc08fde4a3ebbec28f15a58f07411c65b8b8d50bd2d03ecfc74e40a |