Skip to main content

Tools for geochemical data analysis.

Project description

pyrolite

PyPI Say Thanks!

Install

pip install pyrolite

Build Status

License: CSIRO Modified BSD/MIT License

Maintainer: Morgan Williams (morgan.williams at csiro.au)

master develop
Build Status Build Status
Coverage Status Coverage Status

Usage Examples

Note: Examples for compositional data yet to come.

Elements and Oxides

Index Generators

All Elements up to U

>>> import pyrolite.common_elements as ce
>>> ce()  # periodictable.core.Element return
[H, He, Li, Be, ...,  Th, Pa, U]
>>> ce(output='str')  # string return
['H', 'He', 'Li', 'Be', ...,  'Th', 'Pa', 'U']

Oxides for Elements with Positive Charges (up to U)

>>> import pyrolite.common_oxides as co
>>> co()  # periodictable.formulas.Formula return
[H, He, Li, Be, ...,  Th, Pa, U]
>>> co(output='str')  # string return
['H2O', 'He2O', 'HeO', 'Li2O', 'Be2O', 'BeO', 'B2O', 'BO', 'B2O3', ...,
'U2O', 'UO', 'U2O3', 'UO2', 'U2O5', 'UO3']

REE Elements

>>> from pyrolite.geochem import REE
>>> REE(output='str')
['La', 'Ce', 'Pr', 'Nd', 'Pm', ..., 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu']

Data Cleaning

Some simple utilities for cleaning up data tables are included. Assuming you're importing data into pd.DataFrame:

import pandas as pd
df = pd.DataFrame({'label':'basalt', 'ID': 19076,
                   'mgo':20.0, 'SIO2':30.0, 'cs':5.0, 'TiO2':2.0},
                  index=[0])
>>> df.columns
Index(['label', 'ID', 'mgo', 'SIO2', 'cs', 'TiO2'], dtype='object')
from pyrolite.textutil import titlecase
from pyrolite.geochem import tochem

>>> df.columns = [titlecase(h, abbrv=['ID']) for h in df.columns]
Index(['Label', 'ID', 'Mgo', 'Sio2', 'Cs', 'Tio2'], dtype='object')
>>> df.columns = tochem(df.columns)
Index(['Label', 'ID', 'MgO', 'SiO2', 'Cs', 'TiO2'], dtype='object')

Normalisation

A selection of reference compositions are included:

>>> from pyrolite.normalisation import ReferenceCompositions
>>> refcomp = ReferenceCompositions()
{
'Chondrite_PON': Model of Chondrite (Palme2014),
'D-DMM_WH': Model of DepletedDepletedMORBMantle (Workman2005),
'DMM_WH': Model of DepletedMORBMantle (Workman2005),
'DM_SS': Model of DepletedMantle (Salters2004),
'E-DMM_WH': Model of EnrichedDepletedMORBMantle (Workman2005),
'PM_PON': Model of PrimitiveMantle (Palme2014)
}
>>> CH = refcomp['Chondrite_PON']
>>> PM = refcomp['PM_PON']
>>> reels = REE(output='str')
>>> CH[reels]
      value  unc_2sigma units
var                           
La    0.2414    0.014484   ppm
Ce    0.6194    0.037164   ppm
...
Tm   0.02609    0.001565   ppm
Yb    0.1687    0.010122   ppm
Lu   0.02503    0.001502   ppm

The normalize method can be used to normalise dataframes to a given reference (e.g. for spiderplots):

>>> from pyrolite.plot import spiderplot
>>> refcomp = ReferenceCompositions()
>>> CH = refcomp['Chondrite_PON']
>>> DMM = refcomp['DMM_WH']
>>>
>>> reels = ree(output='str')
>>> df = DMM.data.loc[reels, ['value']]
>>> spiderplot(CH.normalize(df), label=f'{DMM.Reference}')

Classification

Some simple discrimination methods are implemented, including the Total Alkali-Silica (TAS) classification:

>>> from pyrolite.classification import Geochemistry
>>>
>>> cm = Geochemistry.TAS()
>>> df.TotalAlkali = df.Na2O + df.K2O
>>> df['TAS'] = cm.classify(df)

This classifier can be quickly added to a bivariate plot, assuming you have data in a pandas DataFrame:

>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>>
>>> df['TotalAlkali'] = df['Na2O'] + df['K2O']
>>>
>>> fig, ax = plt.subplots(1, figsize=(6, 4))
>>> cm.add_to_axes(ax, facecolor='0.9', edgecolor='k',
>>>                linewidth=0.5, zorder=-1)
>>> classnames = cm.clsf.fclasses + ['none']
>>> df['TAScolors'] = df['TAS'].map(lambda x: classnames.index(x))
>>> ax.scatter(df.SiO2, df.TotalAlkali, c=df.TAScolors,
>>>            alpha=0.5, marker='D', s=8, cmap='tab20c')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyrolite-0.0.9.tar.gz (64.9 kB view details)

Uploaded Source

File details

Details for the file pyrolite-0.0.9.tar.gz.

File metadata

  • Download URL: pyrolite-0.0.9.tar.gz
  • Upload date:
  • Size: 64.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyrolite-0.0.9.tar.gz
Algorithm Hash digest
SHA256 677d179ac6b05f83799cea229d77725a7151119359ca510d4625926c68c1266f
MD5 1e0b1a7b7a75f1539a7de2a84d778b43
BLAKE2b-256 eb77391e23697debbc8c713ab6ea1d05eb37bec3152b3d23ac9eec506136f40d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page