Skip to main content

A tiny package for structure analysis of macromolecules.

Project description

Get started with pyrotein

A tiny package for structure analysis of macromolecules. Atomic coordinates retrieved from a PDB file are stored in two formats: list and dictionary. So you can create your own methods on top of either format. This package provides structure analysis capability based on distance matrix.

Install with pip

pip install git+https://github.com/carbonscott/pyrotein --upgrade --user

If upgrading doesn't work as expected, run pip uninstall pyrotein before installing it.

Dependencies

This package has only one dependency -- numpy.

Why this package doesn't come with a visualization tool?

You can create graphics using your preferred visualization tools. For simplicity, it's a design choice not to include a specific visualization library in pyrotein. However, examples of using Gnuplot and matplotlib are included in the examples directory.

The colorschemes used in RMSD distance matrix and SVD analysis are inspired by this paper from Zhong Ren.

Basic structure analysis capabilities

Import the library

import pyrotein as pr

Load a PDB structure

The following code snippet loads a PDB file 6cmo.pdb under pdb directory.

import pyrotein as pr
import os

# Read coordinates from a PDB file...
drc       =  "pdb"
pdb       =  "6cmo"
fl_pdb    = f"{pdb}.pdb"
pdb_path  = os.path.join(drc, fl_pdb)
atoms_pdb = pr.atom.read(pdb_path)

Create a lookup table to navigate the molecule

The method pr.atom.read returns molecular information encapsulated in a Python List. However, a lookup table can be very handy for tasks such as accesssing a particular atom CA from residue 1002 in chain A. The following example shows how to achieve it using lookup table.

Access an atom

# Create a lookup table for this pdb...
atom_dict = pr.atom.create_lookup_table(atoms_pdb)

# Demo: Access atom `CA` from residue 1002 in chain A
atom_dict["A"][1002]["CA"]

Select a segment by range

The following example demos how to select a segment of protein that represents visual rhodopsin from entry 6cmo.

# Create a lookup table for this pdb...
atom_dict = pr.atom.create_lookup_table(atoms_pdb)

# Fetch residues that form rhodopsin...
chain = "A"
nterm = 1
cterm = 348
rho_dict = pr.atom.extract_segment(atom_dict, chain, nterm, cterm)

Establish metadata table

A metadata table keeps track of protein information (PDB, ligand, method, etc). It is vital in understanding clustering in the SVD analysis stage. Meanwhile, the metadata table should be computer readable. For example, I keep metadata in a xlsx file that can be read by a Python module openpyxl. If you decide to use the same module, install it by pip install openpyxl --user. Check out loaddata.py in examples directory to see how to load data from an xlsx using openpyxl.

Metadata table

Advanced structure analysis capabilities

pyrotein is initially designed to perform distance matrix analysis of protein structures. Distance matrix encodes pairwise atomic distance found in a protein structure.

Distance matrix of a bovine rhodopsin structure

Obtain a distance matrix

Main chain only (N, CA, C, O)

import os
import numpy as np
import pyrotein as pr
from loaddata import load_xlsx, label_TMs
from display import plot_dmat

# Specify chains to process...
fl_chain = "chains.comp.xlsx"
lines    = load_xlsx(fl_chain)
drc      = "pdb"

# Define atoms used for distance matrix analysis...
peptide = ["N", "CA", "C", "O"]

# Specify the range of atoms from adrenoceptor...
nterm = 1
cterm = 322

# The first element is to facilitate the indexing during assignment
len_segments = [ 0,
                 cterm - nterm + 1,
               ]
len_peptide = np.sum(len_segments) * len(peptide)

drc_dmat = "dmats"
pal = "set palette defined ( 0 '#F6FF9E', 0 'white', 0.5 'blue', 1 'navy' )"
for i_fl, line in enumerate(lines[-1]):
    # Unpack parameters
    _, pdb, chain, species = line[:4]
    betatype = line[10]

    # Read coordinates from a PDB file...
    fl_pdb    = f"{pdb}.pdb"
    pdb_path  = os.path.join(drc, fl_pdb)
    atoms_pdb = pr.atom.read(pdb_path)

    # Create a lookup table for this pdb...
    atom_dict = pr.atom.create_lookup_table(atoms_pdb)

    # Obtain coordinates...
    xyzs = pr.atom.extract_xyz_by_atom(peptide, atom_dict, chain, nterm, cterm)

    # Calculate distance matrix...
    dmat = pr.distance.calc_dmat(xyzs, xyzs)

    # It is a common practice to visualize a few distance matrix.  
    # Here is just a way how I use Gnuplot to do so, but you can use
    # your favourite tool to visualize it.  
    fl_dmat = os.path.join(drc_dmat, f"{pdb}.{chain}.dmat")
    plot_dmat(dmat, fl_dmat, lbl = {}, palette = pal, NaN = 0)

Main chain + side chain

If all atoms in main chain and side chain are your interests, pyrotein is capable of extracting coordinates and build up data correspondence by means of sequence alignment result (You have to be careful about the result of sequecne alignment. It can be problematic). Sequecne related functionalities are supposed to be found in pyrotein.fasta submodule.

import os
import numpy as np
import pyrotein as pr
from loaddata import load_xlsx
from display import plot_dmat

# [[[ OBTAIN THE CONSENSUS SEQUENCE ]]]
# Read the sequence alignment result...
# [WARNING] !!!sequence alignment is not trustworthy
fl_aln   = 'seq.align.fasta'
seq_dict = pr.fasta.read(fl_aln)

# Obtain the consensus sequence (super seq)...
tally_dict = pr.fasta.tally_resn_in_seqs(seq_dict)
super_seq  = pr.fasta.infer_super_seq(tally_dict)


# [[[ FIND SIZE OF DISTANCE MATRIX ]]]
# Get the sequence index (alignment) on the n-term side...
nseqi = pr.fasta.get_lseqi(super_seq)

# User defined range...
nterm, cterm = 1, 322
len_seg = cterm - nterm + 1
super_seg = super_seq[nseqi : nseqi + len_seg]

# Load constant -- atomlabel...
label_dict = pr.atom.constant_atomlabel()
aa_dict    = pr.atom.constant_aminoacid_code()

# [[[ ANALYZE PDB ENTRIES ]]]
# Specify chains to process...
fl_chain = "chains.comp.xlsx"
lines    = load_xlsx(fl_chain, sheet = "Sheet1")
drc      = "pdb"
drc_dmat = "dmats.full"
pal = "set palette defined ( 0 '#F6FF9E', 0 'white', 0.5 'blue', 1 'navy' )"
for i_fl, line in enumerate(lines[-1:]):
    # Unpack parameters
    _, pdb, chain, _ = line[:4]

    # Read coordinates from a PDB file...
    fl_pdb    = f"{pdb}.pdb"
    pdb_path  = os.path.join(drc, fl_pdb)
    atoms_pdb = pr.atom.read(pdb_path)

    # Create a lookup table for this pdb...
    atom_dict = pr.atom.create_lookup_table(atoms_pdb)

    # Obtain the target protein by range...
    tar_seq = seq_dict[f"{pdb}_{chain}"]
    tar_seg = tar_seq[nseqi : nseqi + len_seg]

    # Standardize sidechain atoms...
    pr.atom.standardize_sidechain(atom_dict)

    # Obtain coordinates...
    xyzs = pr.atom.extract_xyz_by_seq(tar_seg, super_seg, atom_dict, chain, nterm, cterm)

    # Calculate distance matrix...
    dmat = pr.distance.calc_dmat(xyzs, xyzs)

    fl_dmat = os.path.join(drc_dmat, f"{pdb}.{chain}.dmat")
    plot_dmat(dmat, fl_dmat, lbl = {}, palette = pal, NaN = 0)

Distance matrix that depict both main chain and side chain.

RMSD distance matrix (for structure alignment)

What can we do by putting all distance matrix together like below?

If you consider a distance matrix is a picture full of pixels, RMSD distance matrix encodes RMSD of all pixel values at a specific location. RMSD distance matrix enables the understanding of rigidity of a protein, that is to say, smaller deviation means more rigid, and vice versa. So it can provide a so-called rigid protein framework for structure alignment.

Of course, the analysis can be carried out on both main chain only or main + side chain scenarios. You can see how much details are captured while considering both main chain and side chain for each residue.

SVD analysis to understand the similarities and differences of protein structures

A significant protein structure analysis pyrotein enables is SVD analysis. An example code to enable it:

import numpy as np
import pyrotein as pr
import os
from loaddata import load_xlsx

# [[[ OBTAIN THE CONSENSUS SEQUENCE ]]]
# Read the sequence alignment result...
# [WARNING] !!!sequence alignment is not trustworthy, need to check manually
fl_aln   = 'seq.align.fasta'
seq_dict = pr.fasta.read(fl_aln)

# Obtain the consensus sequence (super seq)...
tally_dict = pr.fasta.tally_resn_in_seqs(seq_dict)
super_seq  = pr.fasta.infer_super_seq(tally_dict)


# [[[ FIND SIZE OF DISTANCE MATRIX ]]]
# Get the sequence index (alignment) on the n-term side...
nseqi = pr.fasta.get_lseqi(super_seq)

# User defined range...
nterm, cterm = 1, 322
len_seg = cterm - nterm + 1
super_seg = super_seq[nseqi : nseqi + len_seg]

# Load constant -- atomlabel...
label_dict = pr.atom.constant_atomlabel()
aa_dict    = pr.atom.constant_aminoacid_code()

# Calculate the total length of distance matrix...
len_dmat = np.sum( [ len(label_dict[aa_dict[i]]) for i in super_seg ] )

# [[[ ANALYZE PDB ENTRIES ]]]
# Specify chains to process...
fl_chain = "chains.comp.xlsx"
lines    = load_xlsx(fl_chain, sheet = "Sheet1")
drc      = "pdb"
## dmats = np.zeros((len(lines), len_dmat, len_dmat))
len_lower_tri = (len_dmat * len_dmat - len_dmat) // 2
dmats = np.zeros((len(lines), len_lower_tri))

# Process each entry...
for i_fl, line in enumerate(lines):
    # Unpack parameters
    _, pdb, chain, species = line[:4]

    print(f"Processing {pdb}_{chain}")

    # Read coordinates from a PDB file...
    fl_pdb    = f"{pdb}.pdb"
    pdb_path  = os.path.join(drc, fl_pdb)
    atoms_pdb = pr.atom.read(pdb_path)

    # Create a lookup table for this pdb...
    atom_dict = pr.atom.create_lookup_table(atoms_pdb)

    # Obtain the target protein by range...
    tar_seq = seq_dict[f"{pdb}_{chain}"]
    tar_seg = tar_seq[nseqi : nseqi + len_seg]

    # Standardize sidechain atoms...
    pr.atom.standardize_sidechain(atom_dict)

    # Obtain coordinates...
    xyzs = pr.atom.extract_xyz_by_seq(tar_seg, super_seg, atom_dict, chain, nterm, cterm)

    # Calculate distance matrix...
    dmat = pr.distance.calc_dmat(xyzs, xyzs)

    # Convert dmat into one-dimensional array and keep it in dmats...
    dmats[i_fl, :] = pr.utils.mat2tril(dmat, offset = -1)

# Replace np.nan with mean across samples...
pr.utils.fill_nan_with_mean(dmats.T, axis = 1)

# SVD...
# Column as example
# Row    as feature
u, s, vh = np.linalg.svd( dmats.T, full_matrices = False )

# Export data for downstream analysis...
np.save("dmats.full.npy" , dmats)
np.save("u.full.npy" , u)
np.save("s.full.npy" , s)
np.save("vh.full.npy", vh)

A comparison of left singular values is shown below.

It also distinguishes entries in the analysis better in main + side chain scenario. Check out the follow scatter plot. (Rotation might require to make them look better.)

Thoughts behind building data correspondence

Standardize sidechain atoms

Sidechain atoms can be interchangeable, such as NH1 and NH2 in ARG, OD1 and ND2 in ASN. The figure below illustrates the possible ambiguous scenarios and specifies the swapping rules leading to a standard ordering.

Sample code to consider sidechain atom standardization.

import pyrotein as pr
import numpy as np
import os

# Read atomic information...
pdb       = "1f88"
chain     = "A"
drc_pdb   = "pdb"
fl_pdb    = f"{pdb}.pdb"
path_pdb  = os.path.join(drc_pdb, fl_pdb)
atom_list = pr.atom.read(path_pdb)
atom_dict = pr.atom.create_lookup_table(atom_list)

# Standardize sidechain atoms...
pr.atom.standardize_sidechain(atom_dict)

Examples

The examples directory contains two examples about distance matrix and RMSD distance matrix. Two visualization choices are provided via Gnuplot and matplotlib.

Caveats

The warning RuntimeWarning: Mean of empty slice is triggered by np.nanmean when the input array has nothing but np.nan values.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyrotein-0.1.4.tar.gz (19.6 kB view details)

Uploaded Source

Built Distribution

pyrotein-0.1.4-py3-none-any.whl (18.5 kB view details)

Uploaded Python 3

File details

Details for the file pyrotein-0.1.4.tar.gz.

File metadata

  • Download URL: pyrotein-0.1.4.tar.gz
  • Upload date:
  • Size: 19.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for pyrotein-0.1.4.tar.gz
Algorithm Hash digest
SHA256 ddba1eb13b62e61c614c72f92700ab4ddb420dbda700453937786a1853e25b4a
MD5 182f8b8cd2169cf6cefb197c98b08df4
BLAKE2b-256 2c00679beeaeb314b611d1f3f8bdd2faa9dbcc67255e19989c3f903c24af9482

See more details on using hashes here.

File details

Details for the file pyrotein-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: pyrotein-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 18.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for pyrotein-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 195bee446548e41a64f9beaab4af7afbcb8313f645513e64c5b2550c24ab6414
MD5 8ff97230bf807766e5a9ffd7e4533e9a
BLAKE2b-256 61c5b4d806fc25afe5dbae87b0ea90af14a5a3080f72509c27cbb8be140e681f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page