Python Netlink library
Project description
Pyroute2 is a pure Python netlink library. It requires only Python stdlib, no 3rd party libraries. The library was started as an RTNL protocol implementation, so the name is pyroute2, but now it supports many netlink protocols. Some supported netlink families and protocols:
rtnl, network settings — addresses, routes, traffic controls
nfnetlink — netfilter API: ipset, nftables, …
ipq — simplest userspace packet filtering, iptables QUEUE target
devlink — manage and monitor devlink-enabled hardware
- generic — generic netlink families
nl80211 — wireless functions API (basic support)
taskstats — extended process statistics
acpi_events — ACPI events monitoring
thermal_events — thermal events monitoring
VFS_DQUOT — disk quota events monitoring
the simplest usecase
The socket objects, provided by the library, are actual socket objects with a little bit extended API. The additional functionality aims to:
Help to open/bind netlink sockets
Discover generic netlink protocols and multicast groups
Construct, encode and decode netlink messages
Maybe the simplest usecase is to monitor events. Disk quota events:
from pyroute2 import DQuotSocket # DQuotSocket automatically performs discovery and binding, # since it has no other functionality beside of the monitoring with DQuotSocket() as ds: for message in ds.get(): print(message)
Or IPRoute:
from pyroute2 import IPRoute with IPRoute() as ipr: # With IPRoute objects you have to call bind() manually ipr.bind() for message in ipr.get(): print(message)
rtnetlink sample
More samples you can read in the project documentation.
Low-level IPRoute utility — Linux network configuration. The IPRoute class is a 1-to-1 RTNL mapping. There are no implicit interface lookups and so on.
Some examples:
from socket import AF_INET from pyroute2 import IPRoute # get access to the netlink socket ip = IPRoute() # no monitoring here -- thus no bind() # print interfaces print(ip.get_links()) # create VETH pair and move v0p1 to netns 'test' ip.link_create(ifname='v0p0', peer='v0p1', kind='veth') idx = ip.link_lookup(ifname='v0p1')[0] ip.link('set', index=idx, net_ns_fd='test') # bring v0p0 up and add an address idx = ip.link_lookup(ifname='v0p0')[0] ip.link('set', index=idx, state='up') ip.addr('add', index=idx, address='10.0.0.1', broadcast='10.0.0.255', prefixlen=24) # create a route with metrics ip.route('add', dst='172.16.0.0/24', gateway='10.0.0.10', metrics={'mtu': 1400, 'hoplimit': 16}) # create MPLS lwtunnel # $ sudo modprobe mpls_iptunnel ip.route('add', dst='172.16.0.0/24', oif=idx, encap={'type': 'mpls', 'labels': '200/300'}) # create MPLS route: push label # $ sudo modprobe mpls_router # $ sudo sysctl net.mpls.platform_labels=1024 ip.route('add', family=AF_MPLS, oif=idx, dst=0x200, newdst=[0x200, 0x300]) # release Netlink socket ip.close()
High-level transactional interface, IPDB, a network settings DB:
from pyroute2 import IPDB # # The `with` statement automatically calls `IPDB.release()` # in the case of an exception. with IPDB() as ip: # # Create bridge and add ports and addresses. # # Transaction will be started by `with` statement # and will be committed at the end of the block with ip.create(kind='bridge', ifname='rhev') as i: i.add_port('em1') i.add_port('em2') i.add_ip('10.0.0.2/24') # --> <-- Here the system state is as described in # the transaction, if no error occurs. If # there is an error, all the changes will be # rolled back.
The IPDB arch allows to use it transparently with network namespaces:
from pyroute2 import IPDB from pyroute2 import NetNS # Create IPDB to work with the 'test' ip netns. # # Pls notice, that IPDB itself will work in the # main netns, only the netlink transport is # working in the namespace `test`. ip = IPDB(nl=NetNS('test')) # Wait until someone will set up ipaddr 127.0.0.1 # in the netns on the loopback device ip.interfaces.lo.wait_ip('127.0.0.1') # The IPDB object must be released before exit to # sync all the possible changes that are in progress. ip.release()
The project contains several modules for different types of netlink messages, not only RTNL.
network namespace samples
Network namespace manipulation:
from pyroute2 import netns # create netns netns.create('test') # list print(netns.listnetns()) # remove netns netns.remove('test')
Create veth interfaces pair and move to netns:
from pyroute2 import IPDB ip = IPDB() # create interface pair ip.create(ifname='v0p0', kind='veth', peer='v0p1').commit() # move peer to netns with ip.interfaces.v0p1 as veth: veth.net_ns_fd = 'test' # don't forget to release before exit ip.release()
List interfaces in some netns:
from pyroute2 import NetNS from pprint import pprint ns = NetNS('test') pprint(ns.get_links()) ns.close()
More details and samples see in the documentation.
installation
make install or pip install pyroute2
requires
Python >= 2.7
The pyroute2 testing framework requires flake8, coverage, nosetests.
links
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pyroute2-0.4.19.tar.gz
.
File metadata
- Download URL: pyroute2-0.4.19.tar.gz
- Upload date:
- Size: 577.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 122a1e34702287b805742a6edd8fe8483608238bd1602df2d5e3274bd8e8030a |
|
MD5 | 15c2b4a9062cbce83ce871b88c9c11cf |
|
BLAKE2b-256 | b19ef0b196ec69d12fc73dba6763bdc456164ecb9edc33f10e34fd5291e087fb |