Skip to main content

Damererau-Levenshtein implementation with Rust for high-performance.

Project description

Rust implementation of the Damerau-Levenshtein distance

Damerau-Levenshtein implementation in Rust as Python package. You should use this package if you need to calculate a distance metric for lists of integers or strings, and you need high-performance. If you only need to check the distance between two strings checkout editdistance or jellyfish.

Install

pip install pyrsdameraulevenshtein

Use

import pyrsdameraulevenshtein as dl

distance = dl.distance_int([1, 2, 3], [1, 3])
# distance = 1
normalized_distance = dl.normalized_distance_int([1, 2, 3], [1, 3])
# normalized_distance = 0.33
similarity = dl.similarity_int([1, 2, 3], [1, 3])
# similarity = 0.66
distance = dl.distance_str(["A", "B", "C"], ["A", "C"])
# distance = 1
normalized_distance = dl.normalized_distance_str(["A", "B", "C"], ["A", "C"])
# normalized_distance = 0.33
similarity = dl.similarity_str(["A", "B", "C"], ["A", "C"])
# similarity = 0.66
distance = dl.distance_unicode("ABC", "AC")
# distance = 1
normalized_distance = dl.normalized_distance_unicode("ABC", "AC")
# normalized_distance = 0.33
similarity = dl.similarity_unicode("ABC", "AC")
# similarity = 0.66

Get started

  1. First, create a virtual python environment.
  2. Install packages pip install -r requirements.txt
  3. Create the Rust binary
    1. Full performance: maturin build --release and pip install target/wheels/*.whl
    2. Develop version: maturin develop
  4. Run the tests python tests/DamerauLevenshteinTest.py

Performance

Tests are executed on a Mac Mini with M1 chip with Python 3.10. Redo these tests in tests/DamerauLevenshteinTest.py.

List comparisons

import random
import time
import pyrsdameraulevenshtein
from fastDamerauLevenshtein import damerauLevenshtein
from pyxdameraulevenshtein import damerau_levenshtein_distance

n = 100000
x = 10

print("Int lists:")
a_lists = [random.sample(list(range(x)), k=x, counts=[x for i in range(x)]) for i in range(n)]
b_lists = [random.sample(list(range(x)), k=x, counts=[x for i in range(x)]) for i in range(n)]
tic = time.perf_counter()
for a, b in zip(a_lists, b_lists):
    result = pyrsdameraulevenshtein.distance_int(a, b)
toc = time.perf_counter()
print(f"{toc - tic:0.4f} seconds, THIS implementation")
# 0.0847 seconds, THIS implementation <<< BEST PERFORMANCE
tic = time.perf_counter()
for a, b in zip(a_lists, b_lists):
    result = damerau_levenshtein_distance(a, b)
toc = time.perf_counter()
print(f"{toc - tic:0.4f} seconds, pyxdameraulevenshtein")
# 0.3073 seconds, pyxdameraulevenshtein
tic = time.perf_counter()
for a, b in zip(a_lists, b_lists):
    result = damerauLevenshtein(a, b, similarity=False)
toc = time.perf_counter()
print(f"{toc - tic:0.4f} seconds, fastDamerauLevenshtein")
# 0.1257 seconds, fastDamerauLevenshtein

String comparisons

import random
import time
import jellyfish
import textdistance
import pyrsdameraulevenshtein
from fastDamerauLevenshtein import damerauLevenshtein
from pyxdameraulevenshtein import damerau_levenshtein_distance

n = 100000
x = 10

print("Strings:")
a_strings = [
    "".join(random.sample(list(chr(ord("A") + i) for i in range(x)), k=x, counts=[x for i in range(x)]))
    for y in range(n)]
b_strings = [
    "".join(random.sample(list(chr(ord("A") + i) for i in range(x)), k=x, counts=[x for i in range(x)]))
    for y in range(n)]
tic = time.perf_counter()
for a, b in zip(a_strings, b_strings):
    result = pyrsdameraulevenshtein.distance_unicode(a, b)
toc = time.perf_counter()
print(f"{toc - tic:0.4f} seconds, THIS implementation")
# 0.0764 seconds, THIS implementation
tic = time.perf_counter()
for a, b in zip(a_strings, b_strings):
    result = damerau_levenshtein_distance(a, b)
toc = time.perf_counter()
print(f"{toc - tic:0.4f} seconds, pyxdameraulevenshtein")
# 0.3925 seconds, pyxdameraulevenshtein
tic = time.perf_counter()
for a, b in zip(a_strings, b_strings):
    result = damerauLevenshtein(a, b, similarity=False)
toc = time.perf_counter()
print(f"{toc - tic:0.4f} seconds, fastDamerauLevenshtein")
# 0.1275 seconds, fastDamerauLevenshtein
tic = time.perf_counter()
for a, b in zip(a_strings, b_strings):
    result = jellyfish.damerau_levenshtein_distance(a, b)
toc = time.perf_counter()
print(f"{toc - tic:0.4f} seconds, jellyfish.damerau_levenshtein_distance")
# 0.0546 seconds, jellyfish.damerau_levenshtein_distance
tic = time.perf_counter()
for a, b in zip(a_strings, b_strings):
    result = textdistance.DamerauLevenshtein(a, b)
toc = time.perf_counter()
print(f"{toc - tic:0.4f} seconds, textdistance.DamerauLevenshtein")
# 0.0191 seconds, textdistance.DamerauLevenshtein <<< BEST PERFORMANCE

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyrsdameraulevenshtein-1.1.0.tar.gz (20.5 kB view details)

Uploaded Source

Built Distributions

pyrsdameraulevenshtein-1.1.0-cp312-none-win_amd64.whl (123.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyrsdameraulevenshtein-1.1.0-cp312-none-win32.whl (117.9 kB view details)

Uploaded CPython 3.12 Windows x86

pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_x86_64.whl (415.5 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_i686.whl (438.7 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_armv7l.whl (515.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_aarch64.whl (434.1 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (249.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (285.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (292.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (254.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (249.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (263.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pyrsdameraulevenshtein-1.1.0-cp312-cp312-macosx_11_0_arm64.whl (220.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyrsdameraulevenshtein-1.1.0-cp312-cp312-macosx_10_12_x86_64.whl (222.5 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

pyrsdameraulevenshtein-1.1.0-cp311-none-win_amd64.whl (123.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyrsdameraulevenshtein-1.1.0-cp311-none-win32.whl (118.9 kB view details)

Uploaded CPython 3.11 Windows x86

pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl (415.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_i686.whl (438.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_armv7l.whl (515.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_aarch64.whl (434.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (251.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (285.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (292.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (254.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (249.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (265.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pyrsdameraulevenshtein-1.1.0-cp311-cp311-macosx_11_0_arm64.whl (222.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyrsdameraulevenshtein-1.1.0-cp311-cp311-macosx_10_12_x86_64.whl (224.2 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

File details

Details for the file pyrsdameraulevenshtein-1.1.0.tar.gz.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0.tar.gz
Algorithm Hash digest
SHA256 84743c40b648750f5cd37060047074717db05acb8ed740e899a2f6e707f7233a
MD5 20faacd56d778b067aa31751ad07d9a5
BLAKE2b-256 261802885896126b78c30e86a5040f4001c45c4165972fee8915b1ed00c87d81

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 5830c21fdc1166b72562e22f0fa9a35350736a9e6a6898fb55413025da292fae
MD5 823a9f1598bf91b507a1a3ea378048f2
BLAKE2b-256 1dd4e14d5d0f8e7e7e22be3853d017f2bcba93306c6e29c4fc34fdb9e9fd5938

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-none-win32.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 21753237dcfdfa523f93f3c423d0d46f42d8fe89bb0c9a1ca71cca4ade8de14c
MD5 2fbc31508d6af74e55ea1dc1852efa3c
BLAKE2b-256 fdaf240d330e1f8de07564310e8299bf819a05c0ba9ffdab699f937c4a72716d

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fd523787cf742685de036375cb55bdc4763110274f66a32cfee3aa645c83c313
MD5 dc9f4092a298d91b7987da4f4cb660e8
BLAKE2b-256 24018c0e54d6613dcc7718f5e049b9805b431b3ef764b79a66dc7457177adc03

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7472ce75746f9cbcf237c11f5c7d86e842b6be8f6e20a28e81427428a556ac93
MD5 9f36da8b718331268bd1b1237ad17c6d
BLAKE2b-256 b18ca8974579ff2c02b89639bad64ee0c815265a3830557461b5a852ebdfbbe5

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 6007d4a22621c94dc8e295ead56e99d8d8b593c2dd9e4171bee6e3a2dff0e1ba
MD5 531202c0e4d8076c5735db42d3661022
BLAKE2b-256 135cd9290bc25a51cfbb92ce189612244edb8151f1a4443cfb70865db15eb73a

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 6ccfa34bd9a9d8c5b9783ca8579a7a16f66454a0748e0ed47cc406e2da854da5
MD5 4ad9cfe23669de3a5677164bbdebac6d
BLAKE2b-256 11a426f49a1282bc455017e680d445bd1383b8b6cf0737de1143c80e56289813

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f909fcb6196f511f07a3724d83b39bfb080f2d3a8dbee8d3f38ba272e9418aca
MD5 da345eb2c54d5f1edfc816129da3fc9c
BLAKE2b-256 b3c03fc8e1a8ed3cb3d7974f849040df748bbe082fc7e2ded02a3ce331390b18

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1150b7589a42afd636155f10f47d4bf9023c5e1c8ddf4d31a11f93415ea0d0e3
MD5 8cd39245a358eb6294fca2b173cedd67
BLAKE2b-256 2844673208521a4822288e905b21176aa2712ce17831d3bd8b4a2e027c752242

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2aa036d2501ec7fd863c317a0d3da7e68764537ec37b87ff1c78febb66c51e82
MD5 13d8a5230e232320dd38148b8491e63c
BLAKE2b-256 acd948f9f99903919e3826f9b9dc31e0f7152f6925403f83d62323942156986b

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 045c85cb44f6bdb0c6abb34ef7bd67c7e66afed27a7644e61a1a5c7f632fbb6b
MD5 95d459a5e62cb6c5a16553333e3764a4
BLAKE2b-256 e4b31e942d0f4adfb84eabe1d97ac9858b631da41d5b1233d10fd3ba767d96c2

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6590f0c0ca97d570c4497e59aa87e5798c11788df5d7032366c7d479f93e769f
MD5 194dd5947834b2e769b896b28fe29b4b
BLAKE2b-256 35cd6f17ea8dcd17bf07b0b966748516abdde2fb16ce433e657756a26b78e394

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dac9b5a9e235a23d127a67ac5d63bfc298cfa7751ae2bae822d25c25f3f56946
MD5 6dd31e3fb0619b18aa06c828682bbdd7
BLAKE2b-256 643eb4136d3a371246b6e9218975dbf1bb95655a257dd8e85f5b53fdd15943a7

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 365f5ee779d1ed39f796015799d2000e2f5d3047d5e33fc8e71c6be38c78be6d
MD5 570d30466f01a638f7895f87ccad85ed
BLAKE2b-256 f0d1c49c9ff869d6a68bae998092d8698498078518a11c1a93faabc3e1bb5019

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 60cde45e96a0223bdd5ec63a633162dfbc3d1b43cc5d6cc3f7e063a34125d733
MD5 ebf1cb3ea476e2fc7acab889e9a9d62a
BLAKE2b-256 909961ebf3f76bf929f4e0752d27d1f8e4a353421634746bd004a95196cebcaa

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 9eadb463d5b0681256548d4dbfa21c06b6b5ee66f955738e56777a22c6c376ba
MD5 64aeb27957a95b281aab1ea20425d5f7
BLAKE2b-256 6cceb58a645c7e7c82e10ac232b8da62843a23999d3e7c557beaa7ebb5e026c7

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 91d00d4402784412ac1a803cb3cd443b3741cc8be9e5345809ca0107b83db323
MD5 385d8a9550ab49ded8185ebfaa9ed6f5
BLAKE2b-256 f09fdc0ca79fbefb9b6e9f45eace0c9a1131beff4569a3fbb6b1729d77f5ccc4

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 448585320e23afc594024d6a3a67514de4f5c6764114244b369346f46f1470ed
MD5 a7baa11ad75f7632ac16ac4d64635a12
BLAKE2b-256 86bb1ae16e3006f8c9bfa671c4e97d54c70fb585eb387739ee0c3964abbf0c14

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 9338ce34bdd2ae508ec186f12ff3a5b8ce8542ea6b8c23873c6aeac650e1e588
MD5 9791f69b9a1c18e4c502a6c90532fac3
BLAKE2b-256 fcc9da30c01eec00f287471e7678cd1410943bd10356bcf5e9eae77d77b2429b

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 4dcdfd34e4ea6e555747c638e4c569f0d7252fb4f0d8af6f1f48c001569b8391
MD5 fb5679b3f1bf47c29534224ef5726d0e
BLAKE2b-256 c842fc28a1d175b3cd044c3d5b7f9d41d458a8d44503ebbb69abad354d06a906

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 121693c3f63e7453ffe04164a0d670cd79da56983bab72ac7bd21cd28636d123
MD5 60d9e7506c6af1947ee82ac5ab885e70
BLAKE2b-256 ceeeebf02e8d46d25dfab07e2c09d6dad8ac3b8adc5474b39b44090baa9e14c2

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5f89a03d038a258bde95fd9285c61b2e2802e7914bf87f11f76abec55f53d45
MD5 188d36c9f42c5d5293c1a582fa6cacc3
BLAKE2b-256 48e7baad1a47bee4ced4265ff7ff39db3493687e9739696b392b26a4fea9fd58

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 35446df6ebac2cbd0a970353eeddeed8562033e7b76d4ae77935af0a73d642bf
MD5 c4308deafa398a63af85c3be14818f03
BLAKE2b-256 7a27b600254c788caa2d96aec4faf6267d2e1a40cd26f4dc2639f82843d1dbdb

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7e9420ef7cc75c131aa59ceb1addecf4e61f58e38144d2eaf5b18f4096ad3ec9
MD5 6b46ddb280b4f9c22b6decae2e35a862
BLAKE2b-256 c0ee60b47f26f46527938bb4766aa135e2de829ccf97596ea596d773d9dd1191

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 922639d064410eecd829ac9535eb44de25ba63f96fa99607b99b571a7a4bdb9c
MD5 03e4f45d53318832187ed8392f8a5962
BLAKE2b-256 a222e0118db39f76e494bdfacbc836c406d51262aa5f48d6759af2081df5b584

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 50a90092da88272ef63cfa3785eeb2841ae57dd8320dc30933efb26a9e198309
MD5 2de5e370b0de96c1106b419b6dc7a0d1
BLAKE2b-256 a8d063c77d5b45bf0cc73c5dbaa9072d94c95caea8c96cd64817fe41fa2daf3f

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8268d3b4cd7e8b8d366c6ef6fc5280bd5a16157a91d2ab50994c8c795dc3958e
MD5 13c09313415659e01c6b104705558cc0
BLAKE2b-256 0c7157d53570c04fe9f0094ca895f25463f1254909b8de260e819f474910e870

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 72ca70bfff1a312b9f2453e7582adf4117057b080a1cbc4ee70a78e72974829e
MD5 c19647dd37642b9e2c09bc1d77aa01f7
BLAKE2b-256 3f6b9214428a8bad9059ea7e7bd1985052240f55d621a054a5b2e74e1037b797

See more details on using hashes here.

File details

Details for the file pyrsdameraulevenshtein-1.1.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyrsdameraulevenshtein-1.1.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 4e4dca13187438737c106b51e42db778427be02fd7425d664cba6e9dbd6b6166
MD5 b88b1a0d60f8f32b6fef13eba4e7fe1c
BLAKE2b-256 a32cb61e806a6229e9786b64e3219766ec4c467f9fbd07fed2cc25f645782d2d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page