Skip to main content

A python implementation of the Simulator Expansion for Likelihood-Free Inference (SELFI) algorithm

Project description

pySELFI

arXiv arXiv GitHub version GitHub commits DOI GPLv3 license PyPI version Docs Website florent-leclercq.eu

Simulator Expansion for Likelihood-Free Inference (SELFI): a python implementation.

Documentation

The code's homepage is https://pyselfi.florent-leclercq.eu. The documentation is available on readthedocs at https://pyselfi.readthedocs.io/. Limited user-support may be asked from the main author, Florent Leclercq.

Contributors

Reference

To acknowledge the use of pySELFI in research papers, please cite its doi:10.5281/zenodo.3341588 (or for the latest version, see the badge above), as well as the papers Leclercq et al. (2019) and Leclercq (2022):

  • Primordial power spectrum and cosmology from black-box galaxy surveys
    F. Leclercq, W. Enzi, J. Jasche, A. Heavens
    MNRAS 490, 4237 (2019), arXiv:1902.10149 [astro-ph.CO] [ADS] [pdf]

  • Simulation-based inference of Bayesian hierarchical models while checking for model misspecification
    F. Leclercq
    Proceedings of the 41st International Conference on Bayesian and Maximum Entropy methods in Science and Engineering (MaxEnt2022), 18-22 July 2022, Paris, France
    Physical Sciences Forum 5, 4 (2022), arXiv:2209.11057 [astro-ph.CO] [ADS] [pdf]

      @ARTICLE{pySELFI1,
          author = {{Leclercq}, Florent and {Enzi}, Wolfgang and {Jasche}, Jens and {Heavens}, Alan},
          title = "{Primordial power spectrum and cosmology from black-box galaxy surveys}",
          journal = {\mnras},
          keywords = {methods: statistical, cosmological parameters, large-scale structure of Universe, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics},
          year = "2019",
          month = "Dec",
          volume = {490},
          number = {3},
          pages = {4237-4253},
          doi = {10.1093/mnras/stz2718},
          archivePrefix = {arXiv},
          eprint = {1902.10149},
          primaryClass = {astro-ph.CO},
          adsurl = {https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.4237L},
          }
    
      @ARTICLE{pySELFI2,
          author = {{Leclercq}, Florent},
          title = "{Simulation-based inference of Bayesian hierarchical models while checking for model misspecification}",
          journal = {Physical Sciences Forum},
          keywords = {Statistics - Methodology, Astrophysics - Instrumentation and Methods for Astrophysics, Mathematics - Statistics Theory, Quantitative Biology - Populations and Evolution, Statistics - Machine Learning},
          year = "2022",
          month = "Sep",
          volume = {5},
          pages = {4},
          doi = {10.3390/psf2022005004},
          archivePrefix = {arXiv},
          eprint = {2209.11057},
          primaryClass = {stat.ME},
          adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220911057L},
          }
    

License

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. By downloading and using pySELFI, you agree to the LICENSE, distributed with the source code in a text file of the same name.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyselfi-2.0.tar.gz (76.6 kB view hashes)

Uploaded Source

Built Distribution

pyselfi-2.0-py3-none-any.whl (85.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page