Skip to main content

QG Model in spherical harmonics

Project description

Animated example

pyshqg

Documentation Status

pyshqg is a python solver for the Marshal and Molteni (1993) quasi-geostrophic (QG) model. QG models express the conservation of potential vorticity over time and are meant to describe the large-scale circulation of the atmosphere under specific hypotheses. This QG model is very special, because it is expressed in spherical harmonics and because it encapsulates complex physical processes.

Installation

Install using pip:

$ pip install pyshqg

More details can be found on this page.

Usage

Here is a sneak peak at how to use the package. First import all the machinery.

>>> import numpy as np
>>>
>>> from pyshqg.backend.numpy_backend import NumpyBackend as Backend
>>> from pyshqg.preprocessing.reference_data import load_test_data
>>> from pyshqg.core.constructors import construct_model, construct_integrator

Load the data and create the model and integrator.

>>> ds_test = load_test_data(internal_truncature=21, grid_truncature=31)
>>> backend = Backend(floatx='float64')
>>> model = construct_model(backend, ds_test.config)
>>> rk4 = construct_integrator(ds_test.config['rk4_integration'], model)

Perform one integration step and test against the test data.

>>> state = model.model_state(ds_test.spec_q.to_numpy())
>>> fwd_state = rk4.forward(state)
>>>
>>> def rms(x):
...     return np.sqrt(np.mean(np.square(x)))
>>>
>>> def rmse(x, y):
...     return rms(x-y)
>>>
>>> rms_ref = rms(ds_test.spec_rk4.to_numpy())
>>> rms_diff = rmse(
...     backend.to_numpy(fwd_state['spec_q']),
...     ds_test.spec_rk4.to_numpy(),
... )
>>> assert rms_diff < 1e-6 * rms_ref

Run the model for a full trajectory and convert the output to an xarray.Dataset.

>>> state = model.model_state(ds_test.spec_q.to_numpy())
>>> trajectory = rk4.run(
...     state,
...     t_start=0,
...     num_snapshots=8,
...     num_steps_per_snapshot=10,
...     variables=('q', 'psi'),
... )
>>> trajectory
<xarray.Dataset> Size: 14MB
Dimensions:  (time: 9, batch: 16, level: 3, lat: 32, lon: 64)
Coordinates:
  * time     (time) int64 72B 0 18000 36000 54000 ... 90000 108000 126000 144000
  * lat      (lat) float64 256B -85.76 -80.27 -74.74 ... 74.74 80.27 85.76
  * lon      (lon) float64 512B 180.0 185.6 191.2 196.9 ... 163.1 168.8 174.4
Dimensions without coordinates: batch, level
Data variables:
    q        (time, batch, level, lat, lon) float64 7MB -0.000298 ... -0.0001269
    psi      (time, batch, level, lat, lon) float64 7MB 1.445e+08 ... -1.38e+07

More details can be found on this page.

Aknowledgements

This python package is based on an original implementation of the model in Fortran written at LMD by XXX.

Todo-list

  • make higher resolution gif animation
  • make more example notebooks (see list below)
  • fill in the documentation sections
  • fill in docstrings, in particular with the convention used in the docs
  • publish first version on pypi and conda-forge
  • write pytorch/jax backends
  • include unit tests in github CI
  • apply linting and include it in github CI

Potential example notebooks:

  • one notebook for each term of the QG model
  • how to compute the forecast skill T15 vs T31 (as illustration)
  • how to use tf backend to compute the grad
  • gradient test for tf backend
  • adjoint test for tf backend
  • how to define a NN-based model error correction for the T21 and train it with dummy data

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyshqg-1.0.1.tar.gz (32.5 MB view details)

Uploaded Source

Built Distribution

pyshqg-1.0.1-py3-none-any.whl (32.5 MB view details)

Uploaded Python 3

File details

Details for the file pyshqg-1.0.1.tar.gz.

File metadata

  • Download URL: pyshqg-1.0.1.tar.gz
  • Upload date:
  • Size: 32.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.13

File hashes

Hashes for pyshqg-1.0.1.tar.gz
Algorithm Hash digest
SHA256 07c849b64cf351de5cf8b8afc946fd30741304bfc54d744aae013c3b7be981f8
MD5 60a25f0fced5850b5658befbae37e3c0
BLAKE2b-256 07b1220190e402ce57a39454b1f8932d01312963219dbf451802bd232d9d0e7b

See more details on using hashes here.

File details

Details for the file pyshqg-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: pyshqg-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 32.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.13

File hashes

Hashes for pyshqg-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1fdc32ad22ccd5940e94ab834cd4e90b676e9fbd5aa448e04b324090d44c9fda
MD5 b12b440029c28a1376ff596e4c72caf5
BLAKE2b-256 df7ca130c9cc54f044b166fe698cdc6ecc7f1f33d2d295e61221d5c2910f42ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page