simdjson bindings for python
Project description
pysimdjson
Quick-n'dirty Python bindings for simdjson just to see if going down this path might yield some parse time improvements in real-world applications. So far, the results are promising, especially when only part of a document is of interest.
Bindings are currently tested on OS X, Linux, and Windows.
See the latest documentation at http://pysimdjson.tkte.ch.
Installation
There are binary wheels available for py3.6/py3.7 on OS X 10.12 & Windows. On other platforms you'll need a C++17-capable compiler.
pip install pysimdjson
If you're getting errors when installing from pip, there's probably no binary package available for your combination of platform & python version. As long as you have a C++17 compiler installed you can still use pip, you just need to provide a few extra compiler flags. The most common are:
-
gcc/clang:
CFLAGS="-march=native -std=c++17" pip install pysimdjson
-
msvc (Visual Studio 2017):
SET CL="/std:c++17 /arch:AVX2" pip install pysimdjson
or from git:
git clone https://github.com/TkTech/pysimdjson.git
cd pysimdjson
python setup.py install
Example
import simdjson
with open('sample.json', 'rb') as fin:
doc = simdjson.loads(fin.read())
However, this doesn't really gain you that much over, say, ujson. You're still
loading the entire document and converting the entire thing into a series of
Python objects which is very expensive. You can instead use items()
to pull
only part of a document into Python.
Example document:
{
"type": "search_results",
"count": 2,
"results": [
{"username": "bob"},
{"username": "tod"}
],
"error": {
"message": "All good captain"
}
}
And now lets try some queries...
import simdjson
with open('sample.json', 'rb') as fin:
# Calling ParsedJson with a document is a shortcut for
# calling pj.allocate_capacity(<size>) and pj.parse(<doc>). If you're
# parsing many JSON documents of similar sizes, you can allocate
# a large buffer just once and keep re-using it instead.
pj = simdjson.ParsedJson(fin.read())
pj.items('.type') #> "search_results"
pj.items('.count') #> 2
pj.items('.results[].username') #> ["bob", "tod"]
pj.items('.error.message') #> "All good captain"
AVX2
simdjson requires AVX2 support to function. Check to see if your OS/processor supports it:
- OS X:
sysctl -a | grep machdep.cpu.leaf7_features
- Linux:
grep avx2 /proc/cpuinfo
Low-level interface
You can use the low-level simdjson Iterator interface directly, just be aware that this interface can change any time. If you depend on it you should pin to a specific version of simdjson. You may need to use this interface if you're dealing with odd JSON, such as a document with repeated non-unique keys.
with open('sample.json', 'rb') as fin:
pj = simdjson.ParsedJson(fin.read())
iter = simdjson.Iterator(pj)
if iter.is_object():
if iter.down():
print(iter.get_string())
Early Benchmark
Comparing the built-in json module loads
on py3.7 to simdjson loads
.
File | json time |
pysimdjson time |
---|---|---|
jsonexamples/apache_builds.json |
0.09916733999999999 | 0.074089268 |
jsonexamples/canada.json |
5.305393378 | 1.6547515810000002 |
jsonexamples/citm_catalog.json |
1.3718639709999998 | 1.0438697340000003 |
jsonexamples/github_events.json |
0.04840242700000097 | 0.034239397999998644 |
jsonexamples/gsoc-2018.json |
1.5382746889999996 | 0.9597240750000005 |
jsonexamples/instruments.json |
0.24350973299999978 | 0.13639699600000021 |
jsonexamples/marine_ik.json |
4.505123285000002 | 2.8965093270000004 |
jsonexamples/mesh.json |
1.0325923849999974 | 0.38916503499999777 |
jsonexamples/mesh.pretty.json |
1.7129034710000006 | 0.46509220500000126 |
jsonexamples/numbers.json |
0.16577519699999854 | 0.04843887400000213 |
jsonexamples/random.json |
0.6930746310000018 | 0.6175370539999996 |
jsonexamples/twitter.json |
0.6069602610000011 | 0.41049074900000093 |
jsonexamples/twitterescaped.json |
0.7587005720000022 | 0.41576198399999953 |
jsonexamples/update-center.json |
0.5577604210000011 | 0.4961777420000004 |
Getting subsets of the document is significantly faster. For canada.json
getting .type
using the naive approach and the items()
appraoch, average
over N=100.
Python | Time |
---|---|
json.loads(canada_json)['type'] |
5.76244878 |
simdjson.loads(canada_json)['type'] |
1.5984486990000004 |
simdjson.ParsedJson(canada_json).items('.type') |
0.3949587819999998 |
This approach avoids creating Python objects for fields that aren't of interest. When you only care about a small part of the document, it will always be faster.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for pysimdjson-1.4.0-py3.7-win-amd64.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | bf9d0610967b76b0db72cbc3a8bc976584365b558b5860777c4e6617f6258f5d |
|
MD5 | 94afb4ae64f5415c9505a98cd8b7b9fe |
|
BLAKE2b-256 | 3d6c4c159d535a82e8d77457f14790c4cc258b4019a266f9bce524ecc98f09c5 |
Hashes for pysimdjson-1.4.0-py3.6-win-amd64.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6c5ceec0119c07bc1e92aa56986f3a56be97efc741e19b93a4df36251c0f625 |
|
MD5 | 172b43cd377afba54bf7db7954ffbafd |
|
BLAKE2b-256 | 6a00026aa60278ee97dadae77a7d975fa78f6886c1d54d178ddfc6ab5273dec0 |
Hashes for pysimdjson-1.4.0-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1fd058e1e50a3e8d0c545057ea2dbc96bce000731aa3bf517e68296d8fbff089 |
|
MD5 | e6d56c4ab94ba67ea9970e0166b2b98c |
|
BLAKE2b-256 | 3fe8a92d134279decb48ae5f7979f3b3a811c6a5c5b7263b6684ecf013857b7f |
Hashes for pysimdjson-1.4.0-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f8e970f33ca8a8096641c7e8df36d5a1f001bad8c50509eedea6571983d63b5 |
|
MD5 | c8557a6ea4dc8621420ffa33d41eb8c6 |
|
BLAKE2b-256 | eb09a67bb3d95ff2e521bd1f9fca49e6d6f5249e8085b626c33cd930423006c4 |