Skip to main content

A framework for performing numerical simulation of dynamic systems

Project description

python-sim-env

python-sim-env is a framework for performing numerical simulation of dynamic systems based on python. python-sim-env provides several essential components including systems, controllers, and simulators. The motivation of python-sim-env can be summarized as

  • To make easier to develop code for defining a new dynamic system, controller and simulation model.
  • To make it easier to perform a simulation.
  • To enhance re-usability of the already developed code.
  • To require less computation time for performing a simulation.
  • To provide a easy way to utilize simulation data.

python-sim-env achieves the goal by:

  • Clarifying the role of each component.
  • Making sure that each component only contains its essential parts.
  • Supporting various types of systems and various ways of writing code.

Basic Usage

Example 1: Step response of a linear system

In this example, we will learn the following things.

  • Defining a dynamic system.
  • Performing a numerical simulation.
  • Retrieving the simulation data.

First, let's import modules required for the simulation.

import numpy as np
import matplotlib.pyplot as plt
from pysimenv.core.system import DynSystem
from pysimenv.core.simulator import Simulator

We need a DynSystem object for defining the linear system and a Simulator for performing the simulation.

Consider the standard second-order system defined by a transfer function of $$ G(s)=\frac{\omega_{n}^{2}}{s^{2} + 2\zeta\omega_{n} + \omega_{n}^{2}} $$ where $\omega_{n}$ is the natural frequency and $\zeta$ is the damping ratio. The system can be expressed in state-space equation as $$ \dot{x} = \begin{bmatrix} 0 & 1 \ -\omega_{n}^{2} & -2\zeta\omega_{n} \end{bmatrix} x + \begin{bmatrix} 0 \ \omega_{n}^{2} \end{bmatrix}u $$ where $x=[x_{1},x_{2}]^{T}$ is the state and $u$ is the control input.

Inside the main function, we define a function named as deriv_fun representing the right-hand side of the equation. We use values of $\omega_{n}=1$, $\zeta=0.8$.

    def deriv_fun(x, u):
        omega = 1.
        zeta = 0.8
        A = np.array([[0, 1.], [-omega**2, -2*zeta*omega]])
        B = np.array([[0.], [omega**2]])
        x_dot = A.dot(x) + B.dot(u)
        return {'x': x_dot}

We define a dynamic system object using DynSystem class where the initial state is set as $x(0)=[0,0]^{T}$.

    sys = DynSystem(
        initial_states={'x': np.zeros(2)},
        deriv_fun=deriv_fun
    )

Then, we define a simulator and perform a numerical simulation with the integration interval $dt=0.01$, final time $t_{f}=10$, and unit step input for $u$.

    simulator = Simulator(sys)
    simulator.propagate(dt=0.01, time=10., save_history=True, u=np.array([1.]))

After the simulation, the time history, state history and input history can be retrieved as

    t = sys.history('t')
    x = sys.history('x')
    u = sys.history('u')

where the output of history method is returned in numpy.ndarray. The first axis of each array corresponds to the time index, and the second axis of each array corresponds to the state index. Therefore, we can visualize the simulation data as

    fig, ax = plt.subplots()
    for i in range(2):
        ax.plot(t, x[:, i], label="x_" + str(i + 1))
    ax.set_xlabel("Time (s)")
    ax.set_ylabel("x")
    ax.grid()
    ax.legend()

    fig, ax = plt.subplots()
    ax.plot(t, u)
    ax.set_xlabel("Time (s)")
    ax.set_ylabel("u")
    ax.grid()

    plt.show()

The entire code is written as

import numpy as np
import matplotlib.pyplot as plt
from pysimenv.core.system import DynSystem
from pysimenv.core.simulator import Simulator


def main():
    def deriv_fun(x, u):
        omega = 1.
        zeta = 0.8
        A = np.array([[0, 1.], [-omega**2, -2*zeta*omega]])
        B = np.array([[0.], [omega**2]])
        x_dot = A.dot(x) + B.dot(u)
        return {'x': x_dot}

    sys = DynSystem(
        initial_states={'x': np.zeros(2)},
        deriv_fun=deriv_fun
    )
    simulator = Simulator(sys)
    simulator.propagate(dt=0.01, time=10., save_history=True, u=np.array([1.]))

    t = sys.history('t')
    x = sys.history('x')
    u = sys.history('u')

    fig, ax = plt.subplots()
    for i in range(2):
        ax.plot(t, x[:, i], label="x_" + str(i + 1))
    ax.set_xlabel("Time (s)")
    ax.set_ylabel("x")
    ax.grid()
    ax.legend()

    fig, ax = plt.subplots()
    ax.plot(t, u)
    ax.set_xlabel("Time (s)")
    ax.set_ylabel("u")
    ax.grid()

    plt.show()


if __name__ == "__main__":
    main()

The following figures show the simulation result.

Example 2: LQR(Linear Quadratic Regulator) control of a linear system-Part 1

In this example, we will learn the following things.

  • Defining a closed-loop dynamic system.

We begin with importing modules required for the simulation.

import numpy as np
import scipy.linalg as lin
from pysimenv.core.system import DynSystem, MultipleSystem
from pysimenv.core.simulator import Simulator

StaticObject is used for defining a controller, DynSystem for a linear system, MultipleSystem for the closed-loop system.

Let us define the structure of the closed-loop system as a class inheriting from MultipleSystem.

class ClosedLoopSys(MultipleSystem):
    def __init__(self):
        super(ClosedLoopSys, self).__init__()

The open-loop system is defined as

        # open-loop system
        zeta = 0.1
        omega = 1.
        A = np.array([[0., 1.], [-omega**2, -2*zeta*omega]])
        B = np.array([[0.], [omega**2]])

        self.linear_sys = DynSystem(
            initial_states={'x': [0., 1.]},
            deriv_fun=lambda x, u: {'x': A.dot(x) + B.dot(u)}
        )

The control gain is calculated as

        # control gain
        Q = np.identity(2)
        R = np.identity(1)
        P = lin.solve_continuous_are(A, B, Q, R)
        self.K = np.linalg.inv(R).dot(B.transpose().dot(P))

Every sub simulation object inheriting SimObject, which includes DynSystem object, must be attached to the super simulation object at the initialization phase. Therefore, we attach self.linear_sys as

        self.attach_sim_objects([self.linear_sys])

The list of simulation classes inheriting SimObject can be found in Overview section.

We define the feedback structure by implementing _forward method.

    def _forward(self):
        x = self.linear_sys.state['x']
        u_lqr = -self.K.dot(x)
        self.linear_sys.forward(u=u_lqr)

Now, we are ready to perform a simulation. The main function looks like:

def main():
    model = ClosedLoopSys()
    simulator = Simulator(model)
    simulator.propagate(dt=0.01, time=10., save_history=True)
    model.linear_sys.default_plot(show=True)

We used default_plot method defined in DynSystem to simply visualize the simulation result.

The entire code is written as

import numpy as np
import scipy.linalg as lin
from pysimenv.core.system import DynSystem, MultipleSystem
from pysimenv.core.simulator import Simulator


class ClosedLoopSys(MultipleSystem):
    def __init__(self):
        super(ClosedLoopSys, self).__init__()

        # open-loop system
        zeta = 0.1
        omega = 1.
        A = np.array([[0., 1.], [-omega**2, -2*zeta*omega]])
        B = np.array([[0.], [omega**2]])

        self.linear_sys = DynSystem(
            initial_states={'x': [0., 1.]},
            deriv_fun=lambda x, u: {'x': A.dot(x) + B.dot(u)}
        )

        # control gain
        Q = np.identity(2)
        R = np.identity(1)
        P = lin.solve_continuous_are(A, B, Q, R)
        self.K = np.linalg.inv(R).dot(B.transpose().dot(P))

        self.attach_sim_objects([self.linear_sys])

    # implement
    def _forward(self):
        x = self.linear_sys.state['x']
        u_lqr = -self.K.dot(x)
        self.linear_sys.forward(u=u_lqr)


def main():
    model = ClosedLoopSys()
    simulator = Simulator(model)
    simulator.propagate(dt=0.01, time=10., save_history=True)
    model.linear_sys.default_plot(show=True)


if __name__ == "__main__":
    main()

The following figures show the simulation result.

Example 3: LQR(Linear Quadratic Regulator) control of a linear system-Part 2

In this example, we will learn the following things.

  • Defining a controller using StaticObject.
  • Modifying the sampling interval of the controller.

We begin with importing modules required for the simulation.

import numpy as np
import scipy.linalg as lin
from pysimenv.core.base import StaticObject
from pysimenv.core.system import DynSystem, MultipleSystem
from pysimenv.core.simulator import Simulator

We follow the same procedure as in Example 2. The difference is that now we use an object of StaticObject class instead of simply defining a control gain.

        # controller
        Q = np.identity(2)
        R = np.identity(1)
        P = lin.solve_continuous_are(A, B, Q, R)
        K = np.linalg.inv(R).dot(B.transpose().dot(P))

        self.lqr_control = StaticObject(interval=0.05, eval_fun=lambda x: -K.dot(x))

To illustrate the usefulness of StaticObject class, the sampling interval (interval property) is intentionally set as 0.2(seconds) corresponding to sampling frequency of 5(Hz).

We attach both the system object and controller object.

        self.attach_sim_objects([self.linear_sys, self.lqr_control])

Then, we define the system structure by implementing _forward method.

    # implement
    def forward(self):
        x = self.linear_sys.state['x']
        u_lqr = self.lqr_control.forward(x=x)
        self.linear_sys.forward(u=u_lqr)

The rest of the code is similar to that of Example 2. The entire code is written as

import numpy as np
import scipy.linalg as lin
from pysimenv.core.base import StaticObject
from pysimenv.core.system import DynSystem, MultipleSystem
from pysimenv.core.simulator import Simulator


class ClosedLoopSys(MultipleSystem):
    def __init__(self):
        super(ClosedLoopSys, self).__init__()

        ## open-loop system
        zeta = 0.1
        omega = 1.
        A = np.array([[0., 1.], [-omega**2, -2*zeta*omega]])
        B = np.array([[0.], [omega**2]])

        self.linear_sys = DynSystem(
            initial_states={'x': [0., 1.]},
            deriv_fun=lambda x, u: {'x': A.dot(x) + B.dot(u)}
        )

        # controller
        Q = np.identity(2)
        R = np.identity(1)
        P = lin.solve_continuous_are(A, B, Q, R)
        K = np.linalg.inv(R).dot(B.transpose().dot(P))

        self.lqr_control = StaticObject(interval=0.2, eval_fun=lambda x: -K.dot(x))

        self.attach_sim_objects([self.linear_sys, self.lqr_control])

    # implement
    def forward(self):
        x = self.linear_sys.state['x']
        u_lqr = self.lqr_control.forward(x=x)
        self.linear_sys.forward(u=u_lqr)


def main():
    model = ClosedLoopSys()
    simulator = Simulator(model)
    simulator.propagate(dt=0.01, time=10., save_history=True)
    model.linear_sys.default_plot(show=True)


if __name__ == "__main__":
    main()

The following figure shows the simulation result.

Overview

Important classes and methods

Main components for modeling dynamic systems are summarized in the following diagram. Only the essential attributes and methods are listed in the figure. Mostly used attributes and methods when modeling dynamic systems are expressed in bold font.

System classes inheriting SimObject are StaticObject, DynObject, DynSystem, TimeVaryingDynSystem, MultipleSystem.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pysimenv-0.0.4-py3.8.egg (90.8 kB view details)

Uploaded Source

File details

Details for the file pysimenv-0.0.4-py3.8.egg.

File metadata

  • Download URL: pysimenv-0.0.4-py3.8.egg
  • Upload date:
  • Size: 90.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.11

File hashes

Hashes for pysimenv-0.0.4-py3.8.egg
Algorithm Hash digest
SHA256 ecd999b9372c96b0c81fd26c3d0db314cff71dbbd0921d807af5245ae41e205f
MD5 2bf7155fba15c85ca3a238330a4a8751
BLAKE2b-256 227fc6b9dcf0591d8650db88c246b165bd24250ed994c0a7b631fb728286c52c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page