Skip to main content

PyO3 bindings and Python interface to skani, a method for fast fast genomic identity calculation using sparse chaining.

Project description

🐍⛓️🧬 Pyskani Stars

PyO3 bindings and Python interface to skani, a method for fast fast genomic identity calculation using sparse chaining.

Actions Coverage License PyPI Bioconda AUR Wheel Python Versions Python Implementations Source Mirror Issues Docs Changelog Downloads

🗺️ Overview

skani is a method developed by Jim Shaw and Yun William Yu for fast and robust metagenomic sequence comparison through sparse chaining. It improves on FastANI by being more accurate and much faster, while requiring less memory.

pyskani is a Python module, implemented using the PyO3 framework, that provides bindings to skani. It directly links to the skani code, which has the following advantages over CLI wrappers:

  • pre-built wheels: pyskani is distributed on PyPI and features pre-built wheels for common platforms, including x86-64 and Arm64 UNIX.
  • single dependency: If your software or your analysis pipeline is distributed as a Python package, you can add pyskani as a dependency to your project, and stop worrying about the skani binary being present on the end-user machine.
  • sans I/O: Everything happens in memory, in Python objects you control, making it easier to pass your sequences to skani without having to write them to a temporary file.

This library is still a work-in-progress, and in an experimental stage, but it should already pack enough features to be used in a standard pipeline.

🔧 Installing

Pyskani can be installed directly from PyPI, which hosts some pre-built CPython wheels for x86-64 Unix platforms, as well as the code required to compile from source with Rust:

$ pip install pyskani

In the event you have to compile the package from source, all the required Rust libraries are vendored in the source distribution, and a Rust compiler will be setup automatically if there is none on the host machine.

💡 Examples

📝 Creating a database

A database can be created either in memory or using a folder on the machine filesystem to store the sketches. Independently of the storage, a database can be used immediately for querying, or saved to a different location.

Here is how to create a database into memory, using Biopython to load the record:

database = pyskani.Database()
record = Bio.SeqIO.read("vendor/skani/test_files/e.coli-EC590.fasta", "fasta")
database.sketch("E. coli EC590", bytes(record.seq))

For draft genomes, simply pass more arguments to the sketch method, for which you can use the splat operator:

database = pyskani.Database()
records = Bio.SeqIO.parse("vendor/skani/test_files/e.coli-o157.fasta", "fasta")
sequences = (bytes(record.seq) for record in records)
database.sketch("E. coli O157", *sequences)

🗒️ Loading a database

To load a database, either created from skani or pyskani, you can either load all sketches into memory, for fast querying:

database = pyskani.Database.load("path/to/sketches")

Or load the files lazily to save memory, at the cost of slower querying:

database = pyskani.Database.open("path/to/sketches")

🔎 Querying a database

Once a database has been created or loaded, use the Database.query method to compute ANI for some query genomes:

record = Bio.SeqIO.read("vendor/skani/test_files/e.coli-K12.fasta", "fasta")
hits = database.query("E. coli K12", bytes(record.seq))

🔎 See Also

Computing ANI for closed genomes? You may also be interested in pyfastani, a Python package for computing ANI using the FastANI method developed by Chirag Jain et al.

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⚖️ License

This library is provided under the MIT License.

The skani code was written by Jim Shaw and is distributed under the terms of the MIT License as well. See vendor/skani/LICENSE for more information. Source distributions of pyskani vendors additional sources under their own terms using the cargo vendor command.

This project is in no way not affiliated, sponsored, or otherwise endorsed by the original skani authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyskani-0.1.0.tar.gz (2.9 MB view details)

Uploaded Source

Built Distributions

pyskani-0.1.0-pp39-pypy39_pp73-win_amd64.whl (3.3 MB view details)

Uploaded PyPy Windows x86-64

pyskani-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyskani-0.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pyskani-0.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyskani-0.1.0-pp38-pypy38_pp73-win_amd64.whl (3.3 MB view details)

Uploaded PyPy Windows x86-64

pyskani-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyskani-0.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pyskani-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyskani-0.1.0-pp37-pypy37_pp73-win_amd64.whl (3.3 MB view details)

Uploaded PyPy Windows x86-64

pyskani-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyskani-0.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pyskani-0.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyskani-0.1.0-cp311-cp311-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyskani-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyskani-0.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyskani-0.1.0-cp311-cp311-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyskani-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyskani-0.1.0-cp310-cp310-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyskani-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyskani-0.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyskani-0.1.0-cp310-cp310-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyskani-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyskani-0.1.0-cp39-cp39-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyskani-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyskani-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyskani-0.1.0-cp39-cp39-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyskani-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyskani-0.1.0-cp38-cp38-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyskani-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyskani-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyskani-0.1.0-cp38-cp38-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyskani-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyskani-0.1.0-cp37-cp37m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyskani-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyskani-0.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyskani-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyskani-0.1.0.tar.gz.

File metadata

  • Download URL: pyskani-0.1.0.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyskani-0.1.0.tar.gz
Algorithm Hash digest
SHA256 5fb4995757c898297564ccf2ace798076e4a6fe2ae27657ba8eda5a34a6a7389
MD5 2ed2f19f014bcbc000b4953372adbdd0
BLAKE2b-256 6c2be7e17ab843a0cc69b67f16414578848ce430813568e785bc38c1bc7581b7

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 27e7d286d2517ad75effa4d9931ba4f67b31d9e48309aa9d2ef4ca838e2b6f22
MD5 af19e1ff86274f562d2b34a0d558ada6
BLAKE2b-256 b23d91ddd0622224f35e16ca196f356ebdb30db52f052bf382e74acc91e3d7d2

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6596980ae1e5dc7fbda14d1e71b16075a773b6396338709ddf2ffbbff1ce8b4c
MD5 8d5448de3241553bb73ac5a6ed8bf1eb
BLAKE2b-256 a00852c6a3d0b3f47231f75042141596fb898675043388b035155598fc549ceb

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09d31fd7b45043c5f19a88bea0a6093d4beffad82bbaa35e59a67196e849aff6
MD5 8902ec6e602b783067b518a9593f03da
BLAKE2b-256 fcd50555ec1524ea04a7fc2dd6385bc1034f121d036e2d1cfaf2cc8b7afe2224

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 54f7cfb80b56c484de610ea36e7463446817ac703136d5e2c87c139b210212d4
MD5 dfdee09aff73bb2193c143759237fbea
BLAKE2b-256 33bcbb8b20d02dc8cf9e2347bbc9ac0c7f901d4d32da19c738c5759d45109d76

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b1c91b6bd9dfbe2a109885102ee7b3b6b9b181a7470420d27b58ddbff1dc5a9f
MD5 ea88ef5c9b86c7aa8fdccb55c280542f
BLAKE2b-256 f92c57393aab307860f5ca3b0af884ee5664d12adc582b8e6556ee34b4b580bf

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f579948353ee289c9a6f08646e0d73e4e28b91f13f88647055d7505ca242abe
MD5 2dca335866d96b32deb3934d9165e025
BLAKE2b-256 48d9fc9e8a7b71da2bfdcd91630424f9e3c6bb47891d7401dfea6c488cc5bbba

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1bd1792db2479969abbec2b1fee6ef13cdc3ae72a2dd7102129be937e00faaa1
MD5 6143a95d596c98e66e817793eedbd85c
BLAKE2b-256 f62e526b94102ceb5fd6ee58d3a961f912f44607cd0b3e7e33ab0a36923f03a7

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4bb4ee13ef97fab98fb2609a82fa8fa69faec249a5e74d9d8ccd13ee0c62efdb
MD5 d1260cd2d5483b2346072e6f44da0853
BLAKE2b-256 1d1990aa410704f17d158125d37d2a1f0bca20fabe0b669ca994d0bb4a3e4cfd

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e9e59c7e9e82d0791d59919e47531fae2ba0c0238fa791f90d946c9bd7388b60
MD5 28f7b0645c0864dc8065595e7270d332
BLAKE2b-256 4673e7fad8786a4da649a03139386137057dab4021842c39d9779aee8820034b

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87c06b946c6952ec975e36911bfe62ed6517d8c6ca1266ca3188743e2f69f1a5
MD5 52a28ef9af16d841bcfa0fbc03199512
BLAKE2b-256 6ee44ddc76cf48a3b58c986e31bed2b9b96f505bce7e244b0e4a6749230ed0a7

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4820d0905cc3fc36b6684c1fc0eb4bb8e6f89f22a3490e5d6ed1e90dde3acafa
MD5 5013439f4802bc26346445e05c0245d1
BLAKE2b-256 d193e8fd19c127017e46bda5fa8a3bb11f5ede95ffa14c08ccdb2a51e97f7994

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 80d90a1c4ce37f79f3af50272f8f683a243eb6a444d759138f750985699e9633
MD5 3604f201517898e7ccc5224d59a73937
BLAKE2b-256 25b380116370c7baab3a078c134066aa032e951a1f5459c7b13651c7e8d91323

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyskani-0.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 53db16ea16227024c149c6461074293a1a8191eefd7adedc9337870f7f40aa2c
MD5 2e21507f7029d7d3d4f63694d72e0806
BLAKE2b-256 ed2fb50ac9dd8bb3344d3dfa4aa91c4fb9ca588c5a4f8300b4fbe48669c316e1

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b0934594998c38a3e07f48a7bad8ea06259708dcd20d990d4937a4eb2e907d0
MD5 84705e4c784032c0cdc1219b087563ad
BLAKE2b-256 9b8a8b9dddbf6bbadf4a46d90f2f250674e4690508f3c84edc52453f24fac1a5

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5a27cc4f10d89461898ba3825c9507ccfce8901becd8265821744b3d87ee61a
MD5 5af9500fef4eec18f7bbd24ff75d4f11
BLAKE2b-256 a349047ebcf44481c87b2a852151f3a60958bd6d47037849b35a88c7d3ae760f

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 305c66f8ee529d8e42fee0bebd231452a15b70d4e1c7b1108678b8c20c189aee
MD5 caf88082e99e6b32dcc4bc778647ebe6
BLAKE2b-256 cf01b1c1df02b0def6b08a79a319b090db230c98af0697882a595bc4b8df77d3

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b805b0f329ea3d74e6dd5052101cdef2770b8a2c1e6b9fc0ee14192d4cb60b4f
MD5 eb9a677aa1428a79f02290e2aa525b7f
BLAKE2b-256 aaaac6f68487a0ba1831f89a77fe3a8426a20f7e52ebeae2ca480598b1f871ee

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyskani-0.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ef7ab7f02a3cf2848781921429f97d6caff299627a5719bc3c16ff152ad62849
MD5 197f29b1f8fb2b7e4b4199ca19769a34
BLAKE2b-256 25390f87ae01993e19af1636bd342f0a075892af4a6eebb07e2ab4f7eee84eca

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae847088d37d2172ff40023c18b820cc4dd1402ed67ca39cba08facae68b7ff5
MD5 ddac1257d2f0fc45f0e4a7f3132ea0e1
BLAKE2b-256 7630167d1a41d108a8d12b0a734db68abaebfb18b5b25cfb9ae30502273ab034

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 412d911391c456f1e97445a7e0e3257a0186e40a086107cc787e58de96342099
MD5 b3eef690b10be2ec3458f0de60f33ed5
BLAKE2b-256 315f2c0abc8dd3038c947d787c07256b4c4ad55ef3c2fce75a17aab27413532b

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a3bac1f86a88b3cfed23ad5bb9718f33cf6cddd92a2c0adab88fa1e09129969
MD5 b315168e1b5fbde236862d655d34598f
BLAKE2b-256 fe878e3100657fa0b4e00a3d67cab3c4b292962cf61767617768823166e81db2

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b36ebb8c70ee2380b51be0910230087c4ce0ea594b0409021b6461e498042602
MD5 2a4f21864fd99629bfe8672a11d7fdb0
BLAKE2b-256 c89f09c77f142d378beab511e024d826503234989d5c844ce4f487a5a4ac6507

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyskani-0.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 118c85bf21e18f338bfde12a7749fe958f907e12124d563c0223fe291b10879c
MD5 414efa323a9ed9e570e1d753d4202704
BLAKE2b-256 2a51b8884ed8e22825be55a649648f614fe080084763daec8c3568695517eab0

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe1cc245ecc9df3047121d2f1e22d61a3c7ca0be24a8af06496d8fd943bcb9c5
MD5 7e20876c913e7756563f0ba22ccac0a2
BLAKE2b-256 1d68147cb6c08b61f3357b9a900e8b0c136f409b296982c61ece45bdc663ded6

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0a8a0b754b43f6aa9258531ced31792017e172ff5123f872cabde66bfd71ef3
MD5 57c0ea934531b83b1952330f71d159fb
BLAKE2b-256 9e520b9a7859934b81d0b8c66a7cbf14022988da19b8095eaa11006151300b84

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58d3bed3d91dcb1afb9a9f0a13f161fd687d1aa347b635ba09d5d4f9996d5b09
MD5 5063f41df5a1789f2214f20c56db52db
BLAKE2b-256 af53f85730573a8887e15bfeb94bad14c6f50bcc241fef5813d08a32378749db

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 364c4e176261c3a6f9345c972fd6ba319a534e14dfa43b99639311c82de34512
MD5 41be8056c0adedab94887c42b5302002
BLAKE2b-256 403051f94598dbd2e89ba56ecb65b404e1bcc90394ff4beea7fdc6bd11dc6ab9

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyskani-0.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cfd84b2b25803ec8690a23459f02bd4f0709ceec164a712eb44eb6c9b680d465
MD5 cfacfd5344b94c49c48afda97072d0a5
BLAKE2b-256 ea587b2067e0f614de729ff5d500a0b5cd61025d86ad2221167cefa6de29a2dc

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ead3bc1c5f4202a2ca25c5039d6b8b805290b1305eecccdeb5b16bb21bc10b8f
MD5 ae65fbb555ea58cbbe42b4eed8250712
BLAKE2b-256 978941a286857f2203660a87a5b41e5788f6400ea99b7df8e22cc855983926b0

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 262e7caa22fdc4c09ac9218378ca41afc3fab28d0fad2f65086455eeeffd3a82
MD5 a77f67ea10fc6cf2f4e5cc31f3a491e2
BLAKE2b-256 01d24869c8e5116a07e1d3fbbbaacee2156572de60255f8f87e89ab310252660

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1951a58672915a986c7916f835767c0c7f8c2de4517002d914096cd1554e9f7c
MD5 80533e80e5b1a2af476c50ae18166d34
BLAKE2b-256 ab844557102c55dcc1b72b581d50aff73d6a19c69d409b357c469436f3e983af

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee8007b708ea020d9d175c663f08e7734adaaf7f4993700f9d98dabd249a6ce0
MD5 1098acd698e7ff238dfaadf7116ebb1a
BLAKE2b-256 47dad37fae0c7a3c8b18e43ea6419aa1c34d897ed13fb23bff12e6ad305b53a8

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyskani-0.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d9015b64cf68c99fee22fb897122cd1672f5421e734fe5313498666c47999475
MD5 651bf752da9f6c3424152d6b44619ad0
BLAKE2b-256 e028151d3f184442f820181811aef4f29d96d00047991bfee946373d044a49cd

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c79ed9abf36d3f56ccbc7b80f0162a20ed7665f7975cd9737973e10363641be2
MD5 0cf243c946595b16b619a471eef73fe2
BLAKE2b-256 4a76c032a1daa215201930d5d87b845f308a3de88a00cbee3ab1eaaa77debf04

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8bb35e4007fccfabdf77e22ef439fe61eeec702463542bff96eeefda38eeb1b8
MD5 9b1fa2ae0e568125c16aea9b073cf85d
BLAKE2b-256 b0e9be93bf62ccb67336bf74b416775a5a5c1e12674e267b4170098f8a63ca85

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27929d4b06055b1277b2a6f9abf667a24ff1517e784dcada872c37fa19470a53
MD5 dda9cc5ed96eaeda4082b8c3681f22cc
BLAKE2b-256 ec1063cef8328b750baba272d6802ed2c1705ee951e696272c0ddeb80fd44531

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page