Skip to main content

PyO3 bindings and Python interface to skani, a method for fast fast genomic identity calculation using sparse chaining.

Project description

🐍⛓️🧬 Pyskani Stars

PyO3 bindings and Python interface to skani, a method for fast fast genomic identity calculation using sparse chaining.

Actions Coverage License PyPI Bioconda AUR Wheel Python Versions Python Implementations Source Mirror Issues Docs Changelog Downloads

🗺️ Overview

skani is a method developed by Jim Shaw and Yun William Yu for fast and robust metagenomic sequence comparison through sparse chaining. It improves on FastANI by being more accurate and much faster, while requiring less memory.

pyskani is a Python module, implemented using the PyO3 framework, that provides bindings to skani. It directly links to the skani code, which has the following advantages over CLI wrappers:

  • pre-built wheels: pyskani is distributed on PyPI and features pre-built wheels for common platforms, including x86-64 and Arm64 UNIX.
  • single dependency: If your software or your analysis pipeline is distributed as a Python package, you can add pyskani as a dependency to your project, and stop worrying about the skani binary being present on the end-user machine.
  • sans I/O: Everything happens in memory, in Python objects you control, making it easier to pass your sequences to skani without having to write them to a temporary file.

This library is still a work-in-progress, and in an experimental stage, but it should already pack enough features to be used in a standard pipeline.

🔧 Installing

Pyskani can be installed directly from PyPI, which hosts some pre-built CPython wheels for x86-64 Unix platforms, as well as the code required to compile from source with Rust:

$ pip install pyskani

In the event you have to compile the package from source, all the required Rust libraries are vendored in the source distribution, and a Rust compiler will be setup automatically if there is none on the host machine.

💡 Examples

📝 Creating a database

A database can be created either in memory or using a folder on the machine filesystem to store the sketches. Independently of the storage, a database can be used immediately for querying, or saved to a different location.

Here is how to create a database into memory, using Biopython to load the record:

database = pyskani.Database()
record = Bio.SeqIO.read("vendor/skani/test_files/e.coli-EC590.fasta", "fasta")
database.sketch("E. coli EC590", bytes(record.seq))

For draft genomes, simply pass more arguments to the sketch method, for which you can use the splat operator:

database = pyskani.Database()
records = Bio.SeqIO.parse("vendor/skani/test_files/e.coli-o157.fasta", "fasta")
sequences = (bytes(record.seq) for record in records)
database.sketch("E. coli O157", *sequences)

🗒️ Loading a database

To load a database, either created from skani or pyskani, you can either load all sketches into memory, for fast querying:

database = pyskani.Database.load("path/to/sketches")

Or load the files lazily to save memory, at the cost of slower querying:

database = pyskani.Database.open("path/to/sketches")

🔎 Querying a database

Once a database has been created or loaded, use the Database.query method to compute ANI for some query genomes:

record = Bio.SeqIO.read("vendor/skani/test_files/e.coli-K12.fasta", "fasta")
hits = database.query("E. coli K12", bytes(record.seq))

🔎 See Also

Computing ANI for closed genomes? You may also be interested in pyfastani, a Python package for computing ANI using the FastANI method developed by Chirag Jain et al.

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⚖️ License

This library is provided under the MIT License.

The skani code was written by Jim Shaw and is distributed under the terms of the MIT License as well. See vendor/skani/LICENSE for more information. Source distributions of pyskani vendors additional sources under their own terms using the cargo vendor command.

This project is in no way not affiliated, sponsored, or otherwise endorsed by the original skani authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyskani-0.1.2.tar.gz (2.9 MB view details)

Uploaded Source

Built Distributions

pyskani-0.1.2-pp310-pypy310_pp73-win_amd64.whl (3.3 MB view details)

Uploaded PyPy Windows x86-64

pyskani-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyskani-0.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pyskani-0.1.2-pp310-pypy310_pp73-macosx_12_0_x86_64.whl (3.4 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

pyskani-0.1.2-pp39-pypy39_pp73-win_amd64.whl (3.3 MB view details)

Uploaded PyPy Windows x86-64

pyskani-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyskani-0.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pyskani-0.1.2-pp39-pypy39_pp73-macosx_12_0_x86_64.whl (3.4 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

pyskani-0.1.2-pp38-pypy38_pp73-win_amd64.whl (3.3 MB view details)

Uploaded PyPy Windows x86-64

pyskani-0.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyskani-0.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pyskani-0.1.2-pp38-pypy38_pp73-macosx_12_0_x86_64.whl (3.4 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

pyskani-0.1.2-pp37-pypy37_pp73-win_amd64.whl (3.3 MB view details)

Uploaded PyPy Windows x86-64

pyskani-0.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyskani-0.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pyskani-0.1.2-pp37-pypy37_pp73-macosx_12_0_x86_64.whl (3.4 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

pyskani-0.1.2-cp312-cp312-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyskani-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyskani-0.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyskani-0.1.2-cp312-cp312-macosx_12_0_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

pyskani-0.1.2-cp312-cp312-macosx_12_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

pyskani-0.1.2-cp311-cp311-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyskani-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyskani-0.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyskani-0.1.2-cp311-cp311-macosx_12_0_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

pyskani-0.1.2-cp311-cp311-macosx_12_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

pyskani-0.1.2-cp310-cp310-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyskani-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyskani-0.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyskani-0.1.2-cp310-cp310-macosx_12_0_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

pyskani-0.1.2-cp310-cp310-macosx_12_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

pyskani-0.1.2-cp39-cp39-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyskani-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyskani-0.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyskani-0.1.2-cp39-cp39-macosx_12_0_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

pyskani-0.1.2-cp39-cp39-macosx_12_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

pyskani-0.1.2-cp38-cp38-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyskani-0.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyskani-0.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyskani-0.1.2-cp38-cp38-macosx_12_0_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

pyskani-0.1.2-cp38-cp38-macosx_12_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

pyskani-0.1.2-cp37-cp37m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyskani-0.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyskani-0.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyskani-0.1.2-cp37-cp37m-macosx_12_0_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m macOS 12.0+ x86-64

File details

Details for the file pyskani-0.1.2.tar.gz.

File metadata

  • Download URL: pyskani-0.1.2.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyskani-0.1.2.tar.gz
Algorithm Hash digest
SHA256 f40880a32583699d80657182807fdae74d6a6b2881912148c1e6da0f41ccc38b
MD5 1f63549a823556563fb2e4e983d9156b
BLAKE2b-256 43f60d017193e0c7d935d3cc88ea6e0348ece012d2b645bbc5e8037808e069b4

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a94f191fa8bec7aa524a269bf67fe982242bb33c62499a8c40e5e57ad6a5d13f
MD5 fd3a38496ab584e32cb71c43cb95706e
BLAKE2b-256 18471dd8a6ce82382ca6e02d2a8e3730e9cdd7e4613f38dc203e0f3c62d3e84c

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 650f85731fbd567a6bb2a7dd10ebe160f3437614896ddc2d1066699bde4b3fbc
MD5 dd45578502ac6960df580da5ada20f7a
BLAKE2b-256 93e60c3a84f36133596e332105755474e93d624c732bfe0cd8afb802ffa28d76

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ab5dbba23b61deaaf2fcfa660ca09736273b7bbc82758365ca13c7421c8a8e8d
MD5 9b211290f55de2aff0de7682281299a3
BLAKE2b-256 f472874dcadd23d055492fdd867e010cf2638c58a6fb3909442df570a3b2b6ec

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp310-pypy310_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp310-pypy310_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 63528f124020daa436420df9db2738b7a38592d2460c87adb92b58f1ab398d47
MD5 95d88c0575ed211726d9940ee02d5885
BLAKE2b-256 1af82f3e79f953924a955af711344c656bd395aab00fad56ebbdbb4e393423e6

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 435234c982b2f344200637acb7fbed71dc57e85837914601048adfc32ba20182
MD5 f53d471f090d17dac599bca5d22fba66
BLAKE2b-256 043e183322af5df468dcdaa7309d53519a13f43424625f24a4350ba11873b2e5

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d90a3b9cadb409604020cb4a10e3cc6a842366d3008f355bc81f33c6855328a2
MD5 3da907166e98b1545293576b00d597c1
BLAKE2b-256 aa2fc383f4dc15174d2fd2e891259e893dccc92336f6c04ffcb7a50084b14d98

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 11d75a4bfde6c6800130a5c77c2d94a003fc5cf5281ef084d1814af6b6ecc93e
MD5 2587586115332dcd294d82859b270be4
BLAKE2b-256 cc78e8aa670e1f50e0ee768955427862d89cb0f3b9f70dba423e24efa0b247d1

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp39-pypy39_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp39-pypy39_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 1fb526588583e5ca6a613969970fd5e55de3693af2aba37ff41e6d07ce8e3b59
MD5 fa5a2a7c131fde4ed9ff23f8bd464210
BLAKE2b-256 f8cf7ca462b745ff98f29a5117a04b64c7db1269d0fe700c6ac5905b41729a0b

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c96087aad2ac4a479b8a3462ed9cfd1ad22ae9cd803eb5abf36e4b919c2419d3
MD5 efe9c165fc09421695e30aca5e4269bb
BLAKE2b-256 b59ce64df4354fe2da44461d59e9c014b335bf4caca59b3fd033a5cb68515a9a

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a599389b7d0102a1744b3f3871133d3a79cd9a5623d2b1d8ec1e312b96c003e7
MD5 977fb5e58f65167162ab07cae06976fd
BLAKE2b-256 02b78e39ac888a2083a2295cb16c1a7195b6156bb5ad50df7963b31d4dad5d20

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d079790ab279eac627593983dbbf51444a4f3febfd7fe086277d7216bb7a8d7a
MD5 e89132f593a61bfe7a3f0249e4625e77
BLAKE2b-256 6f3fb73a0cc5c7fd11fd5bf9a022fb2c2b968f9d12301dd72d39b8cf0ebc8418

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp38-pypy38_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp38-pypy38_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 a9c40677957689aab0758ee0da9a1d7a01416a5e1e5239bd16fcaf066c9d029f
MD5 7522428b22db62a12ca35703b1e123ca
BLAKE2b-256 19233470079426a2e755b327ea3a4ad0490fadc5f6e54f60d25afd32e2c81a53

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f9068ae29e222397604f40b61f684ed0015fa1cc21ccf0c800329128f3872b9a
MD5 b541ff2bddeb92369315b80a063c4d5a
BLAKE2b-256 117fc839cc27b56fbdecee4c0f2f6d41ef6e4ddf02623d47d0aa994144978add

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b940d259de2241edb0372f93b4a4c52024ea3c6575882c971bdc43b3460e0eba
MD5 599fe2900adb2d8a811bb1d344bf6487
BLAKE2b-256 1ed30d52dd8ff966f11d7a9b11810c26c30183023ea7e97c6bc065bb3a5171ba

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4684d427e6234ba64fedc8a7100f119b3905780fc1d9908d29b453b1275da822
MD5 e697f523fea9b717c09585f758623bf1
BLAKE2b-256 26f9a0544590f82f7b466649d12b42624cbc1777e13c691025055b6ed21996fc

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-pp37-pypy37_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-pp37-pypy37_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 c490dc30ec77bcbb9a03b9efcd67506e6b7ee0ba4b30c918a41ee0e3e1a03331
MD5 775e8e0b4ddd326550ad410df77a2736
BLAKE2b-256 8b1f2d62c2ce1d15c2ece34d1bcdb0b1041518d4051a3fb8adc4fe10348d520c

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyskani-0.1.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bad28ee438c6ddd015e95434c5e403f16eafc40a39ed9914b40a34c5c987105a
MD5 890cdb97e9a2a41c7bb3aae1de30caa6
BLAKE2b-256 8d62ee41c40242cf820e16435764e97b8129c1848dacfb03855d7ca3123a9b92

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e3fb530fbe64339cf875a0e8081f2b51c9c455f55f3773a285554fdbaed7ef0
MD5 14707a8d470bb7d0b716eb9780fe0a42
BLAKE2b-256 8ce6a42472ff9a05b435ac71693687e9e3697fcc4a16c386988e253e3902b8bb

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ea41872f415bd54d21b5d2cbb75c012ba9ec4233d94e593baa68d09e42c6166
MD5 502715772a1be97497e04851f6246609
BLAKE2b-256 2bfcdf90081586ecfd6af578b27b6040a1204ae11a54f6e60d09419da57e64e3

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 9f592b763367747fe2850fa4d6a462552d730fa6ee89ce1b6f9bf7d101e10565
MD5 8150d7a1c2b457471fa805c7a2762b91
BLAKE2b-256 b9e6ec811522dafb7b8872592b7bb0c81110fee0196862b30808dcdff93ff0a5

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 caadd3f36d81c95f43161dc64422698de744c71593ddeb27fb054cd0342f86df
MD5 0cc683d5bd74eded09654b053345a0c9
BLAKE2b-256 6fa7eab1554c64175e5415d28bcd75496c6232a097454f58db67b1c5bd50b595

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyskani-0.1.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e76afce1be76f72b62830206b4fd72d3f818d2ae5bfe650762c464a0dc21d1b3
MD5 20185e043b6c968923aecbf84235bb5e
BLAKE2b-256 0dcc873b21c3fb8ed613bd2b3e6dc63c6f10b787c22d422934a0eead7af2eb96

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad996762766c09c5537671f7e5898d534a720966bc4d2dd5d7ce17c36eb7562c
MD5 4a421e1f4d643e6585eebecf2d57a290
BLAKE2b-256 c09e1c7f9d06528160100aabd8e5a8fb54acb8ec9c32ec5f8ff2ddec48df9a0d

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f99bdaca28f0df000eb80eb59f89e0ccdb7606c2480d5797b737c623df933d96
MD5 aaedff51c4b3f8cb90ccdf1179cb5614
BLAKE2b-256 a79d2d6653a5f3367b758c93d7c47eca582e5640e64de6f43c78dd9bb1893af9

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 b38c877c86455536a782990a4cf2b3c9418d67392489fb795db34facf5fd3a28
MD5 c4c9b641369c42a34e2423dc5332dff9
BLAKE2b-256 2f62a27d49597b40debeb9780d29bbd27a543448a1f2dd7a2b3ceaf14466bc67

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 594405b856a2a4f5d8aefeec25e09615eea90cd784ecd8d12cabace7eff6f482
MD5 c3e149ac3d418672a3e7ea84ac2420a7
BLAKE2b-256 da85e499615ee0ccae7f580e46bdc72aa04db9097d425e63ff4500cea9127d8c

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyskani-0.1.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 17283e0f9c1cc6043ca1dcd7d4f9896b7c66848f6923eedab3916567b332065e
MD5 f6609cf2fd7984e334e6056c7b85c54e
BLAKE2b-256 204a67ad45eb505f456fc9d32bc996ef5ae685771e97f1a1569ba9c54ea007e5

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f207957787037b0a8ad372bee611b635a0ba4d31781567a3fd6c6830f35d3003
MD5 8f32aac2b17a87e8c8fe556e986162c3
BLAKE2b-256 e08599d02242aa5850e76d586df3d481c2c3db51e99be94ca474e8c494c7d553

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1a02ec57e23e38238036e550ca02d89f081d3de0886db3bfeadc3c9a308c28c1
MD5 09ba519881974b11da08692ecc632da2
BLAKE2b-256 0fadd1b1734b092816e761a4dcf3bb2383d9986cc88aa764e0a8db12ca98f8e8

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 2d13f5cb106555c3bee67a14f8667edf56d23daa0b0299a097e057e90b8408c6
MD5 99e58b3dc3d3fab2570bac649f91d59e
BLAKE2b-256 6adaeab335af5e9e7f79e2a0d91bb71251a1504314d357d76843cbf4d59b0859

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8abf682784251c4a9908d31160871e3fdb38cf4da292885526283d3e77279ada
MD5 8644c110ef3b3fef10158ee311391942
BLAKE2b-256 1eae786a14e53d5a1f80babd07e3fce24ba75784eb25f1101f53fbe826ea1a4f

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyskani-0.1.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a93ed2c75975049075061a680edeca1f464c8533c2ef4c83b3d76eca7c979bab
MD5 d6788e3c2923b7423360d1d51a1a56a0
BLAKE2b-256 e8aa44513a6ab67802b6a6c8bae053e8f2e7bf48c9bb06df69d54e7925858f8b

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68e79877c5fa8d843073b6f196eb7c8112ac1cfd8ea65313baca0b203c52f13a
MD5 69fcb4a953a03b902177cd66aeb2d314
BLAKE2b-256 9c9dd4e5150159f314e2c5ee23abafb9d115008734e074a0da20240c95d7da55

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1c6239d00c605d1d64a41d0681433db2e2a193d98c2836a6397cd7788f171d5f
MD5 04b4cac3f57725cee02b034140c8c71b
BLAKE2b-256 76bc7cd865db0453cdde35781ea29419782618b1d39797c887795f74c035eac1

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 875e238f01cd7a14b542ca8e6fd03b18fbe621bb3d6f4c8fd0cfa5dac7a342e4
MD5 13ce862419a30cd11c2ede813a27d57c
BLAKE2b-256 454efeda4bca44f536ffb315dfc4a7bd7a52d82f4a0c29eaa2dc7364c17584e4

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 c0f468b5104ac036b85c22ac49eb4f67e8ede6c503cd3313e7a4c0e9b4b8a62a
MD5 567460791626b30888cf31f402ed1f6e
BLAKE2b-256 5f8ba389dcd3b72a0aeb21cc8623735ff3e522516e55083b33fa6e5786dcbece

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyskani-0.1.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 eafcee245dc808b4bdfaca517a01ae0cdd634161319fc84eff28b498ca2eac51
MD5 0dfd8457e77fb21442eac395e3437031
BLAKE2b-256 de11db56578a8abfefee567e939c60ba0f1c537d606442039e5523e4d005ecf8

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d40fc6d6c035b96d3a51f01cffe468cec75064c29c6aab5be7b40c9625f6aa6
MD5 e6574c426002e4e8a3225c3fa445a80a
BLAKE2b-256 4f452840c9b03e1ca4495af6d65331759a32b76ffef404a3af9a810c9287d5d9

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6ba2a7c79ff72fe2060bde9097090b95345a11c4239accb7893ce1d095764c6
MD5 84f8604ce72034f427d51c4c34979047
BLAKE2b-256 f01fbbbdd37b5fdc5ff52d15c6680ab30085b9436b75858f14cc32e4eb462f75

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 b8918f7b47e0999032d363c817eee000ba90541aed12f1ad2fd5af0b6f5ac5ab
MD5 b092af33b8660898af8d9b050fc90ecf
BLAKE2b-256 e75697e0b349c993dab48188143a283511c82456ded0fb70bbffeae6d598f10d

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 7e58fbfa25032c63c7f41c962aa21698b6b8e07714ea95fa2d9fd2498ebdf886
MD5 99b1218dc8cc69be155938c45453953d
BLAKE2b-256 fb26db2575d8bc6c28d9ec944c875a0e36cf0cb3fc75f4acf55a06dde8dfdd52

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyskani-0.1.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyskani-0.1.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 caee28ad44cffd0d7ba271438efd7e132265fabf428599eb1e4e7a5273a78776
MD5 9ff16f92a0a54d3e1e65adcc8b427b37
BLAKE2b-256 d1b880efa661c472a4e832a6a9a39acb2ff8e04aa0a03339d0e60d31a545e0a6

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2df9c51f337cb29ed451cc20ff23115af133ce3bfcb5c8f06544979e188d3ea
MD5 ad769dbd4fc32813871d65aecaeb484c
BLAKE2b-256 69379cfa0bd7a023ee19a25bec3cb7a660da7f41f7fd3cf4d63068f8c6140315

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 50023741d4ab74d2d6e2dd99467af661262d85d590974c49cb76900b4db16153
MD5 4b1915aaccf7a43b58ec5649ca21c53d
BLAKE2b-256 750914edc848169a1e9a0ee731639ac55a5a693019f61d20cdd9f55861cd5da0

See more details on using hashes here.

Provenance

File details

Details for the file pyskani-0.1.2-cp37-cp37m-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyskani-0.1.2-cp37-cp37m-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 898c3f699c4ce3b4ed471c6b43aa106fbd2f8768b78b27a2569aee2d5a79a2c0
MD5 d3bc10aec282463e756bc122c21d2782
BLAKE2b-256 b3e6ae92d6559d7e449f8236d0c9a85a717f868911904e58623c1cf66afaae04

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page