Quickly create summary statistics for a given dataframe.
Project description
pyskim
Quickly create summary statistics for a given dataframe.
This package aspires to be as awesome as skimr.
Installation
$ pip install pyskim
Usage
Commandline tool
pyskim
can be used from the commandline:
$ pyskim iris.csv
── Data Summary ────────────────────────────────────────────────────────────────────────────────────
type value
----------------- -------
Number of rows 150
Number of columns 5
──────────────────────────────────────────────────
Column type frequency:
Count
------- -------
Float64 4
string 1
── Variable type: number ───────────────────────────────────────────────────────────────────────────
name na_count mean sd p0 p25 p50 p75 p100 hist
-- ------------ ---------- ------ ----- ---- ----- ----- ----- ------ ----------
0 sepal_length 0 5.84 0.828 4.3 5.1 5.8 6.4 7.9 ▂▆▃▇▄▇▅▁▁▁
1 sepal_width 0 3.06 0.436 2 2.8 3 3.3 4.4 ▁▁▄▅▇▆▂▂▁▁
2 petal_length 0 3.76 1.77 1 1.6 4.35 5.1 6.9 ▇▃▁▁▂▅▆▄▃▁
3 petal_width 0 1.2 0.762 0.1 0.3 1.3 1.8 2.5 ▇▂▁▂▂▆▁▄▂▃
── Variable type: string ───────────────────────────────────────────────────────────────────────────
name na_count n_unique top_counts
-- ------- ---------- ---------- -----------------------------------------
0 species 0 3 setosa: 50, versicolor: 50, virginica: 50
Full overview:
$ pyskim --help
Usage: pyskim [OPTIONS] <file>
Quickly create summary statistics for a given dataframe.
Options:
-d, --delimiter TEXT Delimiter of file.
-i, --interactive Open prompt with dataframe as `df` after displaying
summary.
--no-dtype-conversion Skip automatic dtype conversion.
--groupby TEXT Group dataframe by this/these variable(s).
--help Show this message and exit.
Python API
Alternatively, it is possible to use it in code:
>>> from pyskim import skim
>>> from seaborn import load_dataset
>>> iris = load_dataset('iris')
>>> skim(iris)
# ── Data Summary ────────────────────────────────────────────────────────────────────────────────────
# type value
# ----------------- -------
# Number of rows 150
# Number of columns 5
# ──────────────────────────────────────────────────
# Column type frequency:
# Count
# ------- -------
# float64 4
# string 1
#
# ── Variable type: number ───────────────────────────────────────────────────────────────────────────
# name na_count mean sd p0 p25 p50 p75 p100 hist
# -- ------------ ---------- ------ ----- ---- ----- ----- ----- ------ ----------
# 0 sepal_length 0 5.84 0.828 4.3 5.1 5.8 6.4 7.9 ▂▆▃▇▄▇▅▁▁▁
# 1 sepal_width 0 3.06 0.436 2 2.8 3 3.3 4.4 ▁▁▄▅▇▆▂▂▁▁
# 2 petal_length 0 3.76 1.77 1 1.6 4.35 5.1 6.9 ▇▃▁▁▂▅▆▄▃▁
# 3 petal_width 0 1.2 0.762 0.1 0.3 1.3 1.8 2.5 ▇▂▁▂▂▆▁▄▂▃
#
# ── Variable type: string ───────────────────────────────────────────────────────────────────────────
# name na_count n_unique top_counts
# -- --------------- ---------- ---------- -----------------------------------------
# 0 species 0 3 versicolor: 50, setosa: 50, virginica: 50
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyskim-0.1.5.tar.gz
(5.9 kB
view details)
Built Distribution
File details
Details for the file pyskim-0.1.5.tar.gz
.
File metadata
- Download URL: pyskim-0.1.5.tar.gz
- Upload date:
- Size: 5.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e796174a31c7e81a70a20eda91bf5708b04513f8c52acd727195d2d54dfca26f |
|
MD5 | d79a8de5a08f1436018cfa1daef84908 |
|
BLAKE2b-256 | c96c25c64e203bd3fa1a87dca601c3366baec47c4c6fb3d920daf87f4d60167f |
File details
Details for the file pyskim-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: pyskim-0.1.5-py3-none-any.whl
- Upload date:
- Size: 7.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3308a7189e47d5fdfb3549afd9d6b13dc40192fe8dba774773180bfc8fe6894f |
|
MD5 | 875f86dc29525b654a94d1b902084088 |
|
BLAKE2b-256 | 2d5774c7ea440c97891bced3ff0c7c2b69a2cae9f96b8543342ae0456c29673e |