Skip to main content

Quickly create summary statistics for a given dataframe.

Project description

pyskim

PyPI Tests

Quickly create summary statistics for a given dataframe.

This package aspires to be as awesome as skimr.

Installation

$ pip install pyskim

Usage

Commandline tool

pyskim can be used from the commandline:

$ pyskim iris.csv
── Data Summary ────────────────────────────────────────────────────────────────────────────────────
type                 value
-----------------  -------
Number of rows         150
Number of columns        5
──────────────────────────────────────────────────
Column type frequency:
           Count
-------  -------
Float64        4
string         1

── Variable type: number ───────────────────────────────────────────────────────────────────────────
    name            na_count    mean     sd    p0    p25    p50    p75    p100  hist
--  ------------  ----------  ------  -----  ----  -----  -----  -----  ------  ----------
 0  sepal_length           0    5.84  0.828   4.3    5.1   5.8     6.4     7.9  ▂▆▃▇▄▇▅▁▁▁
 1  sepal_width            0    3.06  0.436   2      2.8   3       3.3     4.4  ▁▁▄▅▇▆▂▂▁▁
 2  petal_length           0    3.76  1.77    1      1.6   4.35    5.1     6.9  ▇▃▁▁▂▅▆▄▃▁
 3  petal_width            0    1.2   0.762   0.1    0.3   1.3     1.8     2.5  ▇▂▁▂▂▆▁▄▂▃

── Variable type: string ───────────────────────────────────────────────────────────────────────────
    name       na_count    n_unique  top_counts
--  -------  ----------  ----------  -----------------------------------------
 0  species           0           3  setosa: 50, versicolor: 50, virginica: 50

Full overview:

$ pyskim --help
Usage: pyskim [OPTIONS] <file>

  Quickly create summary statistics for a given dataframe.

Options:
  -d, --delimiter TEXT   Delimiter of file.
  -i, --interactive      Open prompt with dataframe as `df` after displaying
                         summary.
  --no-dtype-conversion  Skip automatic dtype conversion.
  --groupby TEXT         Group dataframe by this/these variable(s).
  --help                 Show this message and exit.

Python API

Alternatively, it is possible to use it in code:

>>> from pyskim import skim
>>> from seaborn import load_dataset

>>> iris = load_dataset('iris')
>>> skim(iris)
# ── Data Summary ────────────────────────────────────────────────────────────────────────────────────
# type                 value
# -----------------  -------
# Number of rows         150
# Number of columns        5
# ──────────────────────────────────────────────────
# Column type frequency:
#            Count
# -------  -------
# float64        4
# string         1
#
# ── Variable type: number ───────────────────────────────────────────────────────────────────────────
#     name            na_count    mean     sd    p0    p25    p50    p75    p100  hist
# --  ------------  ----------  ------  -----  ----  -----  -----  -----  ------  ----------
#  0  sepal_length           0    5.84  0.828   4.3    5.1   5.8     6.4     7.9  ▂▆▃▇▄▇▅▁▁▁
#  1  sepal_width            0    3.06  0.436   2      2.8   3       3.3     4.4  ▁▁▄▅▇▆▂▂▁▁
#  2  petal_length           0    3.76  1.77    1      1.6   4.35    5.1     6.9  ▇▃▁▁▂▅▆▄▃▁
#  3  petal_width            0    1.2   0.762   0.1    0.3   1.3     1.8     2.5  ▇▂▁▂▂▆▁▄▂▃
#
# ── Variable type: string ───────────────────────────────────────────────────────────────────────────
#     name               na_count    n_unique  top_counts
# --  ---------------  ----------  ----------  -----------------------------------------
#  0          species           0           3  versicolor: 50, setosa: 50, virginica: 50

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyskim-0.1.5.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

pyskim-0.1.5-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file pyskim-0.1.5.tar.gz.

File metadata

  • Download URL: pyskim-0.1.5.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyskim-0.1.5.tar.gz
Algorithm Hash digest
SHA256 e796174a31c7e81a70a20eda91bf5708b04513f8c52acd727195d2d54dfca26f
MD5 d79a8de5a08f1436018cfa1daef84908
BLAKE2b-256 c96c25c64e203bd3fa1a87dca601c3366baec47c4c6fb3d920daf87f4d60167f

See more details on using hashes here.

File details

Details for the file pyskim-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: pyskim-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyskim-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 3308a7189e47d5fdfb3549afd9d6b13dc40192fe8dba774773180bfc8fe6894f
MD5 875f86dc29525b654a94d1b902084088
BLAKE2b-256 2d5774c7ea440c97891bced3ff0c7c2b69a2cae9f96b8543342ae0456c29673e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page