Probabilistic Predictions
Project description
pysloth
A Python package for Probabilistic Prediction
v0.0.3
Installation
This package supports Python 3.6, 3.7, 3.8, and 3.9
Install via PyPI
Run pip install pysloth
Install from repository
Clone repo with SSH git clone git@github.com:PySloth/pysloth.git
Change directory to where README.md (this file) is located and run pip install .
Quickstart
The following is a code sample showing scpd and ccpd in action
from pysloth import scpd_function, ccpd_function
import numpy as np
import statsmodels.api as sm
np.random.seed(142)
n = 1000 # training set
m = int(0.8 * n) # proper training set
n_cal = n - m # Calibration = training - proper training
n_test = 100
sd_noise = 1
n_delta = 1000 # discretization for y values in interval y_hat +/- 3 * delta
w = 2 # the weights
x_train = w * np.random.random(m) - 1
x_cal = w * np.random.random(n_cal) - 1
x_test = w * np.random.random(n_test) - 1
y_train = w * x_train + np.random.randn(m) * sd_noise
y_cal = w * x_cal + np.random.randn(n_cal) * sd_noise
y_test = w * x_test + np.random.randn(n_test) * sd_noise
x_train_cal = np.reshape(np.hstack((x_train, x_cal)), (n, 1))
y_train_cal = np.reshape(np.hstack((y_train, y_cal)), (n, 1))
xy_train_cal = np.hstack((x_train_cal, y_train_cal))
model = sm.OLS(y_train, x_train).fit()
predictions = model.predict(x_train)
model.summary()
y_hat = model.predict(x_test)
delta = 3 * np.std(y_hat)
y_grid = np.linspace(y_hat.min() - delta, y_hat.max() + delta, n_delta)
print(ccpd_function(x_train_cal, y_train_cal, x_test, y_grid, 5, n_delta))
print(scpd_function(x_train, x_cal, y_train, y_cal, x_test, y_test, y_grid, 5, n_delta))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pysloth-0.0.3.tar.gz
(4.2 kB
view details)
Built Distribution
File details
Details for the file pysloth-0.0.3.tar.gz
.
File metadata
- Download URL: pysloth-0.0.3.tar.gz
- Upload date:
- Size: 4.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff3cce6403b33a71c07559604d500a72de91a7cfabe5ea49d5badf6beb4e689e |
|
MD5 | 6d25ec6c143177bbcc9a293030262e3e |
|
BLAKE2b-256 | efeb8c1f12599c64e4c975e77c652ea48be2165002f7c139b30984d937cf5d0c |
File details
Details for the file pysloth-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: pysloth-0.0.3-py3-none-any.whl
- Upload date:
- Size: 8.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 59f7d53e84d803a939cefd33bd09188115e6d847326f32da73ad086e1c23d016 |
|
MD5 | 41351a2808bc90cc53ce764dd30aab80 |
|
BLAKE2b-256 | d7f2bf84853d5a496022ec725f36070446a6948549c36bb83c029c853f157c78 |