Skip to main content

A small Python MongoDB Document-Based access engine

Project description

PMongo

A small Python MongoDB Document-Based access engine.

Install

 pip install pmongo

Useage

# base use

# import
from pmongo.document import Document
from pmongo.utils import get_mongo_db

db = get_mongo_db(dbname='test')


# define document class
class Data(Document):
    db = db
    class Meta:
        ordering = ['age']


# new a instance
d1 = Data()

# set data and save
d1['grade'] = 2
d1['name'] = 'Tom'
d1['age'] = 8
d1.save()

d2 = Data()
d2['grade'] = 2
d2['name'] = 'Lucy'
d2['age'] = 6
d2.save()

d3 = Data()
d3['grade'] = 3
d3['name'] = 'Jack'
d3['age'] = 7
d3.save()

# display document ObjectId
print('d1.id:', d1.id)

# query
print('grade=2:', Data.objects.find(grade=2).all())

# query count
print('count of grade=2:', Data.objects.find(grade=2).count())

# default order by
print('default order by', Data.objects.find().all())
print('default order by -age', Data.objects.find().order_by('-age').all())

# change
d2['grade'] = 1
d2.save()

print('count of grade=2:', Data.objects.find(grade=2).count())

# delete document
Data.objects.find(grade=2).delete()

print('-------')

# django like query
from pmongo.query import QueryManger


class Data2(Document):
    db = db
    objects = QueryManger()


print(Data2.objects.create(age=20, name='Tom'))

Data2(age=10, name='Jone').save()
Data2(age=15, name='Jack').save()

print('age>=10:', Data2.objects.find(age__gte=10).count())
print('age>11:', Data2.objects.find(age__gt=11).count())

print('between 10~21', Data2.objects.find(age__between=(10, 21)).count())

# delete age field
d1.unset(['age'])
print(d1)

# update data
print('update', Data2.objects.find(age__between=(10, 21)).update(age=25))

print('between 10~21', Data2.objects.find(age__between=(10, 21)).count())

print('age=25', Data2.objects.find(age=25).count())

Data(name='Robin', books=[{'bid': 1, 'name': 'Python Cookbook'}, {'bid': 2, 'name': 'Java 23 Days'}, {'bid': 3, 'name': 'Android Kit'}]).save()
Data(name='Tom', books=[{'bid': 10, 'name': 'DDL'}]).save()

print('book of [1]:', Data.objects.find({'books.bid': 1}).count())
print('book of [2, 10]:', Data.objects.find({'books.bid': {'$in': [2, 10]}}).count())

print(Data.objects.find(name='Tom').values(name=0, _id=0).all())

d1 = Data.objects.find().first()
d2 = Data.objects.find().first()

print('--------')

print(id(d1), d1)
print(id(d2), d2)
print(d1 == d2)

print(set([d1, d2]))

print(Data.objects.find().delete())
print(Data2.objects.find().delete())

Output:

d1.id: 5bf7ddc8f56f4bc0d639a572
grade=2: [Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a573'), 'grade': 2, 'name': 'Lucy', 'age': 6}], Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a572'), 'grade': 2, 'name': 'Tom', 'age': 8}]]
count of grade=2: 2
default order by [Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a573'), 'grade': 2, 'name': 'Lucy', 'age': 6}], Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a574'), 'grade': 3, 'name': 'Jack', 'age': 7}], Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a572'), 'grade': 2, 'name': 'Tom', 'age': 8}]]
default order by -age [Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a572'), 'grade': 2, 'name': 'Tom', 'age': 8}], Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a574'), 'grade': 3, 'name': 'Jack', 'age': 7}], Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a573'), 'grade': 2, 'name': 'Lucy', 'age': 6}]]
count of grade=2: 1
-------
Data2[{'age': 20, 'name': 'Tom', '_id': ObjectId('5bf7ddc8f56f4bc0d639a575')}]
age>=10: 3
age>11: 2
between 10~21 3
Data[{'grade': 2, 'name': 'Tom', '_id': ObjectId('5bf7ddc8f56f4bc0d639a572')}]
update 3
between 10~21 0
age=25 3
book of [1]: 1
book of [2, 10]: 2
[Data[{'books': [{'bid': 10, 'name': 'DDL'}]}]]
--------
4475195856 Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a573'), 'grade': 1, 'name': 'Lucy', 'age': 6}]
4475196976 Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a573'), 'grade': 1, 'name': 'Lucy', 'age': 6}]
False
{Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a573'), 'grade': 1, 'name': 'Lucy', 'age': 6}], Data[{'_id': ObjectId('5bf7ddc8f56f4bc0d639a573'), 'grade': 1, 'name': 'Lucy', 'age': 6}]}
4
3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysmongo-1.0.0.tar.gz (24.1 kB view details)

Uploaded Source

Built Distribution

pysmongo-1.0.0-py3-none-any.whl (25.6 kB view details)

Uploaded Python 3

File details

Details for the file pysmongo-1.0.0.tar.gz.

File metadata

  • Download URL: pysmongo-1.0.0.tar.gz
  • Upload date:
  • Size: 24.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pysmongo-1.0.0.tar.gz
Algorithm Hash digest
SHA256 4b60d6b9a4696c2e97d5bc51e1b0ce61b1d9ff9bae072988f37e56132cee9b2b
MD5 778e60511ee81a67d423854d0d46de4a
BLAKE2b-256 107d73028b4be46bf35edb31c7579bbccceccbc22f5fffe8b2b9a7cbbc4ac554

See more details on using hashes here.

Provenance

File details

Details for the file pysmongo-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: pysmongo-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 25.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pysmongo-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e983961e36f24c2197c8ff361f5616fb21df1220dbf01ba37db21a8f830b0752
MD5 767a61bcd625742a856a073a4dcdc651
BLAKE2b-256 bb76fe37f53295ea256f8ec7ab5411ff201d8bb24097e44e231e47668411c61b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page