Skip to main content

A simple and efficient implementation of SOD metrics.

Project description

Logo

PySODMetrics: A simple and efficient implementation of SOD metrics

Introduction

A simple and efficient implementation of SOD metrics.

Your improvements and suggestions are welcome.

Related Projects

  • PySODEvalToolkit: A Python-based Evaluation Toolbox for Salient Object Detection and Camouflaged Object Detection

Supported Metrics

Metric Sample-based Whole-based Related Class
MAE soft MAE
S-measure $S_{m}$ soft Smeasure
weighted F-measure ($F^{\omega}_{\beta}$) soft WeightedFmeasure
Multi-Scale IoU bin MSIoU
E-measure ($E_{m}$) max,avg,adp Emeasure
F-measure (old) ($F_{beta}$) max,avg,adp Fmeasure
F-measure (new) ($F_{beta}$, $F_{1}$) max,avg,adp,bin bin FmeasureV2+FmeasureHandler
BER max,avg,adp,bin bin FmeasureV2+BERHandler
Dice max,avg,adp,bin bin FmeasureV2+DICEHandler
FPR max,avg,adp,bin bin FmeasureV2+FPRHandler
IoU max,avg,adp,bin bin FmeasureV2+IOUHandler
Kappa max,avg,adp,bin bin FmeasureV2+KappaHandler
Overall Accuracy max,avg,adp,bin bin FmeasureV2+OverallAccuracyHandler
Precision max,avg,adp,bin bin FmeasureV2+PrecisionHandler
Recall max,avg,adp,bin bin FmeasureV2+RecallHandler
Sensitivity max,avg,adp,bin bin FmeasureV2+SensitivityHandler
Specificity max,avg,adp,bin bin FmeasureV2+SpecificityHandler
TNR max,avg,adp,bin bin FmeasureV2+TNRHandler
TPR max,avg,adp,bin bin FmeasureV2+TPRHandler

Usage

The core files are in the folder py_sod_metrics.

  • [Latest, but may be unstable] Install from the source code: pip install git+https://github.com/lartpang/PySODMetrics.git
  • [More stable] Install from PyPI: pip install pysodmetrics

Examples

Reference

@inproceedings{Fmeasure,
    title={Frequency-tuned salient region detection},
    author={Achanta, Radhakrishna and Hemami, Sheila and Estrada, Francisco and S{\"u}sstrunk, Sabine},
    booktitle=CVPR,
    number={CONF},
    pages={1597--1604},
    year={2009}
}

@inproceedings{MAE,
    title={Saliency filters: Contrast based filtering for salient region detection},
    author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander},
    booktitle=CVPR,
    pages={733--740},
    year={2012}
}

@inproceedings{Smeasure,
    title={Structure-measure: A new way to evaluate foreground maps},
    author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali},
    booktitle=ICCV,
    pages={4548--4557},
    year={2017}
}

@inproceedings{Emeasure,
    title="Enhanced-alignment Measure for Binary Foreground Map Evaluation",
    author="Deng-Ping {Fan} and Cheng {Gong} and Yang {Cao} and Bo {Ren} and Ming-Ming {Cheng} and Ali {Borji}",
    booktitle=IJCAI,
    pages="698--704",
    year={2018}
}

@inproceedings{wFmeasure,
  title={How to evaluate foreground maps?},
  author={Margolin, Ran and Zelnik-Manor, Lihi and Tal, Ayellet},
  booktitle=CVPR,
  pages={248--255},
  year={2014}
}

@inproceedings{MSIoU,
    title = {Multiscale IOU: A Metric for Evaluation of Salient Object Detection with Fine Structures},
    author = {Ahmadzadeh, Azim and Kempton, Dustin J. and Chen, Yang and Angryk, Rafal A.},
    booktitle = ICIP,
    year = {2021},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysodmetrics-1.4.2.tar.gz (16.6 kB view details)

Uploaded Source

Built Distribution

pysodmetrics-1.4.2-py3-none-any.whl (16.1 kB view details)

Uploaded Python 3

File details

Details for the file pysodmetrics-1.4.2.tar.gz.

File metadata

  • Download URL: pysodmetrics-1.4.2.tar.gz
  • Upload date:
  • Size: 16.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for pysodmetrics-1.4.2.tar.gz
Algorithm Hash digest
SHA256 e49f77bc4b62ffd6ba548967795907b3e5704932dc8452a4dc0116b1b45733a8
MD5 bb7730428e5be0e3ba66ffe312ba884a
BLAKE2b-256 21693d63f26b1e35f9a81473ce21810068698f8585e9e426814b46c05fb263ca

See more details on using hashes here.

File details

Details for the file pysodmetrics-1.4.2-py3-none-any.whl.

File metadata

  • Download URL: pysodmetrics-1.4.2-py3-none-any.whl
  • Upload date:
  • Size: 16.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for pysodmetrics-1.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ef591420845f652cd83c4fc60a89747caa860b45e9457c88c0e51d39d656bd5d
MD5 07d94568d4f9a23379704604376c5532
BLAKE2b-256 1ad6f947e0354970c29eff0995effa378fdd1b9dffd1eff01acdac1e030ae196

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page