Skip to main content

No project description provided

Project description

==========
pysolve
==========
Solving systems of linear equations
-----------------------------------

The purpose of this code is to aid in expressing and solving
sets of equations using Python.

This tool will take a textual description of the equations
and then run the solver iteratively until it converges to a solution.

The solver uses Gauss-Seidel/SOR to iterate to a solution.
It also uses parts of sympy to aid in parsing the equations.

The initial motivation for this tool was to solve economic
models based on Stock Flow Consistent (SFC) models.

Example usage
-------------

.. code::
from pysolve.model import Model
from pysolve.utils import round_solution,is_close

model = Model()

model.set_var_default(0)
model.var('Cd', desc='Consumption goods demand by households')
model.var('Cs', desc='Consumption goods supply')
model.var('Gs', desc='Government goods, supply')
model.var('Hh', desc='Cash money held by households')
model.var('Hs', desc='Cash money supplied by the government')
model.var('Nd', desc='Demand for labor')
model.var('Ns', desc='Supply of labor')
model.var('Td', desc='Taxes, demand')
model.var('Ts', desc='Taxes, supply')
model.var('Y', desc='Income = GDP')
model.var('YD', desc='Disposable income of households')

# This is a shorter way to declare multiple variables
# model.vars('Y', 'YD', 'Ts', 'Td', 'Hs', 'Hh', 'Gs', 'Cs',
# 'Cd', 'Ns', 'Nd')
model.param('Gd', desc='Government goods, demand', initial=20)
model.param('W', desc='Wage rate', initial=1)
model.param('alpha1', desc='Propensity to consume out of income', initial=0.6)
model.param('alpha2', desc='Propensity to consume o of wealth', initial=0.4)
model.param('theta', desc='Tax rate', initial=0.2)

model.add('Cs = Cd')
model.add('Gs = Gd')
model.add('Ts = Td')
model.add('Ns = Nd')
model.add('YD = (W*Ns) - Ts')
model.add('Td = theta * W * Ns')
model.add('Cd = alpha1*YD + alpha2*Hh(-1)')
model.add('Hs - Hs(-1) = Gd - Td')
model.add('Hh - Hh(-1) = YD - Cd')
model.add('Y = Cs + Gs')
model.add('Nd = Y/W')

# solve until convergence
for _ in xrange(100):
model.solve(iterations=100, threshold=1e-3)

prev_soln = model.solutions[-2]
soln = model.solutions[-1]
if is_close(prev_soln, soln, atol=1e-3):
break

print round_solution(model.solutions[-1], decimals=1)

For additional examples, view the iPython notebooks at

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysolve-0.1.1.tar.gz (17.3 kB view details)

Uploaded Source

File details

Details for the file pysolve-0.1.1.tar.gz.

File metadata

  • Download URL: pysolve-0.1.1.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pysolve-0.1.1.tar.gz
Algorithm Hash digest
SHA256 fc9d3e25b4e72df20e8021835fa4d7a72e6f40cd21b2cc67368db219392f5615
MD5 c3d65582aa9e22268d01b5065936bced
BLAKE2b-256 758d89ceeae431922dc9d7aa043bc8ed58ecc5e8e0699ad6060ae6fe786997b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page