Skip to main content

No project description provided

Project description

==========
pysolve
==========
Solving systems of linear equations
-----------------------------------

The purpose of this code is to aid in expressing and solving
sets of equations using Python.

This tool will take a textual description of the equations
and then run the solver iteratively until it converges to a solution.

The solver uses Gauss-Seidel/SOR to iterate to a solution.
It also uses parts of sympy to aid in parsing the equations.

The initial motivation for this tool was to solve economic
models based on Stock Flow Consistent (SFC) models.

Example usage
-------------

.. code::
from pysolve.model import Model
from pysolve.utils import round_solution,is_close

model = Model()

model.set_var_default(0)
model.var('Cd', desc='Consumption goods demand by households')
model.var('Cs', desc='Consumption goods supply')
model.var('Gs', desc='Government goods, supply')
model.var('Hh', desc='Cash money held by households')
model.var('Hs', desc='Cash money supplied by the government')
model.var('Nd', desc='Demand for labor')
model.var('Ns', desc='Supply of labor')
model.var('Td', desc='Taxes, demand')
model.var('Ts', desc='Taxes, supply')
model.var('Y', desc='Income = GDP')
model.var('YD', desc='Disposable income of households')

# This is a shorter way to declare multiple variables
# model.vars('Y', 'YD', 'Ts', 'Td', 'Hs', 'Hh', 'Gs', 'Cs',
# 'Cd', 'Ns', 'Nd')
model.param('Gd', desc='Government goods, demand', initial=20)
model.param('W', desc='Wage rate', initial=1)
model.param('alpha1', desc='Propensity to consume out of income', initial=0.6)
model.param('alpha2', desc='Propensity to consume o of wealth', initial=0.4)
model.param('theta', desc='Tax rate', initial=0.2)

model.add('Cs = Cd')
model.add('Gs = Gd')
model.add('Ts = Td')
model.add('Ns = Nd')
model.add('YD = (W*Ns) - Ts')
model.add('Td = theta * W * Ns')
model.add('Cd = alpha1*YD + alpha2*Hh(-1)')
model.add('Hs - Hs(-1) = Gd - Td')
model.add('Hh - Hh(-1) = YD - Cd')
model.add('Y = Cs + Gs')
model.add('Nd = Y/W')

# solve until convergence
for _ in xrange(100):
model.solve(iterations=100, threshold=1e-3)

prev_soln = model.solutions[-2]
soln = model.solutions[-1]
if is_close(prev_soln, soln, atol=1e-3):
break

print round_solution(model.solutions[-1], decimals=1)

For additional examples, view the iPython notebooks at

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysolve-0.1.2.tar.gz (17.4 kB view details)

Uploaded Source

File details

Details for the file pysolve-0.1.2.tar.gz.

File metadata

  • Download URL: pysolve-0.1.2.tar.gz
  • Upload date:
  • Size: 17.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pysolve-0.1.2.tar.gz
Algorithm Hash digest
SHA256 98bb8cfb9c6fbe2384a2d473f6bae08b3c6cee2e886d6d55822bf57c0f1d28d4
MD5 0be129f4976fd3044eb5ee3df67fae85
BLAKE2b-256 0bfe12ddab893b2b9500a1776ec103ad5ea9ebc18bbd652776ba49c1fd8fe9f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page