Skip to main content

A simple interface for solving systems of linear equations

Project description

==========
pysolve
==========
Solving systems of linear equations
-----------------------------------

The purpose of this code is to aid in expressing and solving
sets of equations using Python.

This tool will take a textual description of the equations
and then run the solver iteratively until it converges to a solution.

The solver uses Gauss-Seidel/SOR to iterate to a solution.
It also uses parts of sympy to aid in parsing the equations.

The initial motivation for this tool was to solve economic
models based on Stock Flow Consistent (SFC) models.

Example usage
-------------

.. code::
from pysolve.model import Model
from pysolve.utils import round_solution,is_close

model = Model()

model.set_var_default(0)
model.var('Cd', desc='Consumption goods demand by households')
model.var('Cs', desc='Consumption goods supply')
model.var('Gs', desc='Government goods, supply')
model.var('Hh', desc='Cash money held by households')
model.var('Hs', desc='Cash money supplied by the government')
model.var('Nd', desc='Demand for labor')
model.var('Ns', desc='Supply of labor')
model.var('Td', desc='Taxes, demand')
model.var('Ts', desc='Taxes, supply')
model.var('Y', desc='Income = GDP')
model.var('YD', desc='Disposable income of households')

# This is a shorter way to declare multiple variables
# model.vars('Y', 'YD', 'Ts', 'Td', 'Hs', 'Hh', 'Gs', 'Cs',
# 'Cd', 'Ns', 'Nd')
model.param('Gd', desc='Government goods, demand', initial=20)
model.param('W', desc='Wage rate', initial=1)
model.param('alpha1', desc='Propensity to consume out of income', initial=0.6)
model.param('alpha2', desc='Propensity to consume o of wealth', initial=0.4)
model.param('theta', desc='Tax rate', initial=0.2)

model.add('Cs = Cd')
model.add('Gs = Gd')
model.add('Ts = Td')
model.add('Ns = Nd')
model.add('YD = (W*Ns) - Ts')
model.add('Td = theta * W * Ns')
model.add('Cd = alpha1*YD + alpha2*Hh(-1)')
model.add('Hs - Hs(-1) = Gd - Td')
model.add('Hh - Hh(-1) = YD - Cd')
model.add('Y = Cs + Gs')
model.add('Nd = Y/W')

# solve until convergence
for _ in xrange(100):
model.solve(iterations=100, threshold=1e-3)

prev_soln = model.solutions[-2]
soln = model.solutions[-1]
if is_close(prev_soln, soln, atol=1e-3):
break

print round_solution(model.solutions[-1], decimals=1)

For additional examples, view the iPython notebooks at
http://nbviewer.ipython.org/github/kennt/monetary-economics/tree/master/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysolve-0.1.4.tar.gz (17.8 kB view details)

Uploaded Source

File details

Details for the file pysolve-0.1.4.tar.gz.

File metadata

  • Download URL: pysolve-0.1.4.tar.gz
  • Upload date:
  • Size: 17.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pysolve-0.1.4.tar.gz
Algorithm Hash digest
SHA256 a99c4b506086c0232799cf337cf2cc863aeb5e5b63ace775be9c5636e4dd7adb
MD5 8b55b0673eefdc0946c6f1d397912f17
BLAKE2b-256 f2f8b83c21ad6a69bc9f6d90fb7b3e40c56b3b5a7c355e18df0b23ef93da595e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page