Skip to main content

A simple interface for solving systems of linear equations

Project description

==========
pysolve
==========
Solving systems of linear equations
-----------------------------------

The purpose of this code is to aid in expressing and solving
sets of equations using Python.

This tool will take a textual description of the equations
and then run the solver iteratively until it converges to a solution.

The solver uses Gauss-Seidel/SOR to iterate to a solution.
It also uses parts of sympy to aid in parsing the equations.

The initial motivation for this tool was to solve economic
models based on Stock Flow Consistent (SFC) models.

Example usage
-------------

.. code::
from pysolve.model import Model
from pysolve.utils import round_solution,is_close

model = Model()

model.set_var_default(0)
model.var('Cd', desc='Consumption goods demand by households')
model.var('Cs', desc='Consumption goods supply')
model.var('Gs', desc='Government goods, supply')
model.var('Hh', desc='Cash money held by households')
model.var('Hs', desc='Cash money supplied by the government')
model.var('Nd', desc='Demand for labor')
model.var('Ns', desc='Supply of labor')
model.var('Td', desc='Taxes, demand')
model.var('Ts', desc='Taxes, supply')
model.var('Y', desc='Income = GDP')
model.var('YD', desc='Disposable income of households')

# This is a shorter way to declare multiple variables
# model.vars('Y', 'YD', 'Ts', 'Td', 'Hs', 'Hh', 'Gs', 'Cs',
# 'Cd', 'Ns', 'Nd')
model.param('Gd', desc='Government goods, demand', initial=20)
model.param('W', desc='Wage rate', initial=1)
model.param('alpha1', desc='Propensity to consume out of income', initial=0.6)
model.param('alpha2', desc='Propensity to consume o of wealth', initial=0.4)
model.param('theta', desc='Tax rate', initial=0.2)

model.add('Cs = Cd')
model.add('Gs = Gd')
model.add('Ts = Td')
model.add('Ns = Nd')
model.add('YD = (W*Ns) - Ts')
model.add('Td = theta * W * Ns')
model.add('Cd = alpha1*YD + alpha2*Hh(-1)')
model.add('Hs - Hs(-1) = Gd - Td')
model.add('Hh - Hh(-1) = YD - Cd')
model.add('Y = Cs + Gs')
model.add('Nd = Y/W')

# solve until convergence
for _ in xrange(100):
model.solve(iterations=100, threshold=1e-3)

prev_soln = model.solutions[-2]
soln = model.solutions[-1]
if is_close(prev_soln, soln, atol=1e-3):
break

print round_solution(model.solutions[-1], decimals=1)

For additional examples, view the iPython notebooks at
http://nbviewer.ipython.org/github/kennt/monetary-economics/tree/master/

Changelog
---------

0.1.6
-----
* Added support for solving with Broyden's method
* Optimized the code for Broyden and Newton-Raphson, should be much faster now.

0.1.5
-----
* Added the d() function. Implements the difference between the current value
and the value from a previous iteration. d(x) is equivalent to x - x(-1)
* Added support for the following sympy functions: abs, Min, Max, sign, sqrt
* Added some helper functions to aid in debugging larger models
* Added support for solving via Newton-Raphson

0.1.4
-----
* Improved error reporting when unable to solve an equation (due to variable
missing a value).
* Also, evaluate() used to require that all variables have a value, but that
may not be true on initialization, so this requirement has been removed.

0.1.3 (and before)
------------------
* Added support for the exp() and log() functions.
* Fixed a bug where the usage of '>=' within an if_true() would cause an error.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysolve-0.1.6.tar.gz (21.2 kB view details)

Uploaded Source

File details

Details for the file pysolve-0.1.6.tar.gz.

File metadata

  • Download URL: pysolve-0.1.6.tar.gz
  • Upload date:
  • Size: 21.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pysolve-0.1.6.tar.gz
Algorithm Hash digest
SHA256 c80ccc119cb11280538b9d715fc35645d7f93eddc3c158153cadbb10fb94db95
MD5 1335fd4b8fbe0bec37063580456213b2
BLAKE2b-256 eec5a09174e00d6dde852b878e1eff1abd1c51cb3304c4e7c4e8a1fd6c386fd0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page