Skip to main content

A simple interface for solving systems of linear equations

Project description

pysolve - Solving systems of equations

The purpose of this tool is to aid in expressing and solving sets of equations using Python.

This tool will take a textual description of the equations, and then run the solver iteratively until it converges to a solution.

The solver provides the following choices for solving:

  • Gauss-Seidel
  • Newton-Raphson
  • Broyden

It also uses parts of sympy to aid in parsing the equations and evaluating the equations.

The initial motivation for this tool was to solve economic models based on Stock Flow Consistent (SFC) models.

Installation

pip install pysolve

Usage

  1. Define the variables used in the model.
  2. Define the parameters used in the model.
  3. Define the rules (equations)
  4. Solve

Simple example

This example is taken Chapter 3 of the book "Monetary Economics 2e" by Lavoie and Godley, 2012.

from pysolve.model import Model
from pysolve.utils import round_solution, is_close

model = Model()

model.set_var_default(0)
model.var('Cd', desc='Consumption goods demand by households')
model.var('Cs', desc='Consumption goods supply')
model.var('Gs', desc='Government goods, supply')
model.var('Hh', desc='Cash money held by households')
model.var('Hs', desc='Cash money supplied by the government')
model.var('Nd', desc='Demand for labor')
model.var('Ns', desc='Supply of labor')
model.var('Td', desc='Taxes, demand')
model.var('Ts', desc='Taxes, supply')
model.var('Y', desc='Income = GDP')
model.var('YD', desc='Disposable income of households')

# This is a shorter way to declare multiple variables
# model.vars('Y', 'YD', 'Ts', 'Td', 'Hs', 'Hh', 'Gs', 'Cs',
#            'Cd', 'Ns', 'Nd')
model.param('Gd', desc='Government goods, demand', initial=20)
model.param('W', desc='Wage rate', initial=1)
model.param('alpha1', desc='Propensity to consume out of income', initial=0.6)
model.param('alpha2', desc='Propensity to consume out of wealth', initial=0.4)
model.param('theta', desc='Tax rate', initial=0.2)

model.add('Cs = Cd')
model.add('Gs = Gd')
model.add('Ts = Td')
model.add('Ns = Nd')
model.add('YD = (W*Ns) - Ts')
model.add('Td = theta * W * Ns')
model.add('Cd = alpha1*YD + alpha2*Hh(-1)')
model.add('Hs - Hs(-1) =  Gd - Td')
model.add('Hh - Hh(-1) = YD - Cd')
model.add('Y = Cs + Gs')
model.add('Nd = Y/W')

# solve until convergence
for _ in range(100):
    model.solve(iterations=100, threshold=1e-4)

    prev_soln = model.solutions[-2]
    soln = model.solutions[-1]
    if is_close(prev_soln, soln, atol=1e-3):
        break

print(round_solution(model.solutions[-1], decimals=1))

Tutorial

A short tutorial with more explanation is available at http://nbviewer.ipython.org/github/kennt/monetary-economics/blob/master/extra/pysolve%20tutorial.ipynb

More complex examples

For additional examples, view the iPython notebooks at http://nbviewer.ipython.org/github/kennt/monetary-economics/tree/master/

To do list

Data import features
Sparse matrix support (memory improvements for large systems)
Documentation

Changelog

0.2.0
  • Converted to Python 3.8
  • Updated to pass pep8/pycodestyle and pylintrc
  • Fixes for usage with sympy 1.2
  • Added requirements.txt
0.1.7
  • Tutorial
0.1.6
  • Added support for solving with Broyden's method
  • Optimized the code for Broyden and Newton-Raphson, should be much faster now.
0.1.5
  • Added the d() function. Implements the difference between the current value and the value from a previous iteration. d(x) is equivalent to x - x(-1)
  • Added support for the following sympy functions: abs, Min, Max, sign, sqrt
  • Added some helper functions to aid in debugging larger models
  • Added support for solving via Newton-Raphson
0.1.4
  • Improved error reporting when unable to solve an equation (due to variable missing a value).
  • Also, evaluate() used to require that all variables have a value, but that may not be true on initialization, so this requirement has been removed.
0.1.3 (and before)
  • Added support for the exp() and log() functions.
  • Fixed a bug where the usage of '>=' within an if_true() would cause an error.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pysolve-0.2.0-py3-none-any.whl (26.9 kB view details)

Uploaded Python 3

File details

Details for the file pysolve-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: pysolve-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 26.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.8.13

File hashes

Hashes for pysolve-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 844051f1d2adce6b26266564f60a7597d1abf045ec136c20ee17f4889bae0c66
MD5 f1596e25cf9bfb4ab6acf2ce99c234be
BLAKE2b-256 6aca7b7e62e68d94bf9a2458ecbe762761143fc932172e05267cd91ac6c745f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page