Skip to main content

A tool for regression testing Spark Dataframes in Python

Project description

pyspark-regression

pyspark-regression is a concise, no-nonsense library for regression testing between PySpark Dataframes.

For install instructions and API documentation, please visit https://forrest-bajbek.github.io/pyspark-regression/

What is a Regression Test?

A Regression Test ensures that changes to code only produce expected outcomes, introducing no new bugs. These tests are particularly challenging when working with database tables, as the result can be too large to visually inspect. When updating a SQL transformation, Data Engineers must ensure that no rows or columns were unintentionally altered, even if the table has hundreds columns and billions of rows.

pyspark-regression reduces the complexity of Regression Testing by implementing a clean Python API for running regression tests between DataFrames in Apache Spark.

Example

Consider the following table:

id name price
1 Taco 3.001
2 Burrito 6.50
3 flauta 7.50

Imagine you are a Data Engineer, and you want to change the underlying ETL so that:

  1. The price for Tacos is rounded to 2 decimal places.
  2. The name for Flautas is capitalized.

You make your changes, and the new table looks like this:

id name price
1 Taco 3.00
2 Burrito 6.50
3 Flauta 7.50

Running a regression test will help you confirm that the new ETL changed the data how you expected.

Let's create the old and new tables as dataframes so we can run a Regression Test:

from pyspark.sql import SparkSession
from pyspark.sql.types import *
from pyspark_regression import RegressionTest

spark = SparkSession.builder.getOrCreate()
spark.conf.set("spark.sql.shuffle.partitions", 1)

schema = StructType(
    [
        StructField("id", IntegerType()),
        StructField("name", StringType()),
        StructField("price", DoubleType()),
    ]
)

# The old data
df_old = spark.createDataFrame(
    [
        (1, 'Taco', 3.001),
        (2, 'Burrito', 6.50),
        (3, 'flauta', 7.50),
    ],
    schema=schema
)

# The new data
df_new = spark.createDataFrame(
    [
        (1, 'Taco', 3.00),  # Corrected price
        (2, 'Burrito', 6.50),
        (3, 'Flauta', 7.50),  # Corrected name
    ],
    schema=schema
)

regression_test = RegressionTest(
    df_old=df_old,
    df_new=df_new,
    pk='id',
)

RegressionTest() returns a Python class with properties that let you inspect the differences between dataframes. Most notably, the summary property prints a comprehensive analysis in Markdown.

>>> print(regression_test.summary)

# Regression Test: df
- run_id: de9bd4eb-5313-4057-badc-7322ee23b83b
- run_time: 2022-05-25 08:53:50.581283

## Result: **FAILURE**.
Printing Regression Report...

### Table stats
- Count records in old df: 3
- Count records in new df: 3
- Count pks in old df: 3
- Count pks in new df: 3

### Diffs
- Columns with diffs: {'name', 'price'}
- Number of records with diffs: 2 (%oT: 66.7%)

 Diff Summary:
| column_name   | data_type   | diff_category        |   count_record | count_record_%oT   |
|:--------------|:------------|:---------------------|---------------:|:-------------------|
| name          | string      | capitalization added |              1 | 33.3%              |
| price         | double      | rounding             |              1 | 33.3%              |

 Diff Samples: (5 samples per column_name, per diff_category, per is_duplicate)
| column_name   | data_type   |   pk | old_value   | new_value   | diff_category        |
|:--------------|:------------|-----:|:------------|:------------|:---------------------|
| name          | string      |    3 | 'flauta'    | 'Flauta'    | capitalization added |
| price         | double      |    1 | 3.001       | 3.0         | rounding             |

The RegressionTest class provides low level access to all the methods used to build the summary:

>>> print(regression_test.count_record_old) # count of records in df_old
3

>>> print(regression_test.count_record_new) # count of records in df_new
3

>>> print(regression_test.columns_diff) # Columns with diffs
{'name', 'price'}

>>> regression_test.df_diff.filter("column_name = 'price'").show() # Show all diffs for 'price' column
+-----------+---------+---+---------+---------+-------------+
|column_name|data_type| pk|old_value|new_value|diff_category|
+-----------+---------+---+---------+---------+-------------+
|      price|   double|  1|    3.001|      3.0|     rounding|
+-----------+---------+---+---------+---------+-------------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyspark_regression-3.5.1.tar.gz (21.1 kB view details)

Uploaded Source

Built Distribution

pyspark_regression-3.5.1-py3-none-any.whl (17.9 kB view details)

Uploaded Python 3

File details

Details for the file pyspark_regression-3.5.1.tar.gz.

File metadata

  • Download URL: pyspark_regression-3.5.1.tar.gz
  • Upload date:
  • Size: 21.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for pyspark_regression-3.5.1.tar.gz
Algorithm Hash digest
SHA256 75e68bb416aa7fb175a5ac1df0869e3309f32529bee60566c61b3ee76b8f6670
MD5 199237ce1610889823d0ec09efc808f3
BLAKE2b-256 23c089c6b81b1294f7f221ee66a4d589c5c1ac16efec7e56a6eff0dd335ba477

See more details on using hashes here.

File details

Details for the file pyspark_regression-3.5.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pyspark_regression-3.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bb4fbf1df7070ae0a92fc079bfbd58277462f66dd4059ce8942fc40489b75d8e
MD5 8f63225ac59d49cd5e5d74884b70c12d
BLAKE2b-256 2829582d9142a8642dfa57248900146e49e7174f77cc791fc90231981f4420e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page