Skip to main content

Testframework for PySpark DataFrames

Project description

Build Status Version Ruff

pyspark-testframework

Work in progress









The goal of the pyspark-testframework is to provide a simple way to create tests for PySpark DataFrames. The test results are returned in DataFrame format as well.

Tutorial

Let's first create an example pyspark DataFrame

The data will contain the primary keys, street names and house numbers of some addresses.

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, IntegerType, StringType
from pyspark.sql import functions as F
# Initialize Spark session
spark = SparkSession.builder.appName("PySparkTestFrameworkTutorial").getOrCreate()

# Define the schema
schema = StructType(
    [
        StructField("primary_key", IntegerType(), True),
        StructField("street", StringType(), True),
        StructField("house_number", IntegerType(), True),
    ]
)

# Define the data
data = [
    (1, "Rochussenstraat", 27),
    (2, "Coolsingel", 31),
    (3, "%Witte de Withstraat", 27),
    (4, "Lijnbaan", -3),
    (5, None, 13),
]

df = spark.createDataFrame(data, schema)

df.show(truncate=False)
+-----------+--------------------+------------+
|primary_key|street              |house_number|
+-----------+--------------------+------------+
|1          |Rochussenstraat     |27          |
|2          |Coolsingel          |31          |
|3          |%Witte de Withstraat|27          |
|4          |Lijnbaan            |-3          |
|5          |null                |13          |
+-----------+--------------------+------------+

Import and initialize the DataFrameTester

from testframework.dataquality import DataFrameTester
df_tester = DataFrameTester(
    df=df,
    primary_key="primary_key",
    spark=spark,
)

Import configurable tests

from testframework.dataquality.tests import ValidNumericRange, RegexTest

Initialize the RegexTest to test for valid street names

valid_street_name = RegexTest(
    name="ValidStreetName",
    pattern=r"^[A-Z][a-zéèáàëï]*([ -][A-Z]?[a-zéèáàëï]*)*$",
)

Run valid_street_name on the street column using the .test() method of DataFrameTester.

df_tester.test(
    col="street",
    test=valid_street_name,
    nullable=False,  # nullable, hence null values are converted to True
    description="street contains valid Dutch street name.",
).show(truncate=False)
+-----------+--------------------+-----------------------+
|primary_key|street              |street__ValidStreetName|
+-----------+--------------------+-----------------------+
|1          |Rochussenstraat     |true                   |
|2          |Coolsingel          |true                   |
|3          |%Witte de Withstraat|false                  |
|4          |Lijnbaan            |true                   |
|5          |null                |false                  |
+-----------+--------------------+-----------------------+

Run the IntegerString test on the number column

df_tester.test(
    col="house_number",
    test=ValidNumericRange(
        min_value=0,
    ),
    nullable=True,  # nullable, hence null values are converted to True
    # description is optional, let's not define it for illustration purposes
).show()
+-----------+------------+-------------------------------+
|primary_key|house_number|house_number__ValidNumericRange|
+-----------+------------+-------------------------------+
|          1|          27|                           true|
|          2|          31|                           true|
|          3|          27|                           true|
|          4|          -3|                          false|
|          5|          13|                           true|
+-----------+------------+-------------------------------+

Let's take a look at the test results of the DataFrame using the .results attribute.

df_tester.results.show(truncate=False)
+-----------+-----------------------+-------------------------------+
|primary_key|street__ValidStreetName|house_number__ValidNumericRange|
+-----------+-----------------------+-------------------------------+
|1          |true                   |true                           |
|2          |true                   |true                           |
|3          |false                  |true                           |
|4          |true                   |false                          |
|5          |false                  |true                           |
+-----------+-----------------------+-------------------------------+

We can use .descriptions or .descriptions_df to get the descriptions of the tests.


This can be useful for reporting purposes. For example to create reports for the business with more detailed information than just the column name and the test name.
df_tester.descriptions
{'street__ValidStreetName': 'street contains valid Dutch street name.',
 'house_number__ValidNumericRange': 'house_number__ValidNumericRange(min_value=0.0, max_value=inf)'}
df_tester.description_df.show(truncate=False)
+-------------------------------+-------------------------------------------------------------+
|test                           |description                                                  |
+-------------------------------+-------------------------------------------------------------+
|street__ValidStreetName        |street contains valid Dutch street name.                     |
|house_number__ValidNumericRange|house_number__ValidNumericRange(min_value=0.0, max_value=inf)|
+-------------------------------+-------------------------------------------------------------+

Custom tests

Sometimes tests are too specific or complex to be covered by the configurable tests. That's why we can create custom tests and add them to the DataFrameTester object.

Let's do this using a custom test which should tests that every house has a bath room. We'll start by creating a new DataFrame with rooms rather than houses.

rooms = [
    (1, "living room"),
    (1, "bath room"),
    (1, "kitchen"),
    (1, "bed room"),
    (2, "living room"),
    (2, "bed room"),
    (2, "kitchen"),
]

schema_rooms = StructType(
    [
        StructField("primary_key", IntegerType(), True),
        StructField("room", StringType(), True),
    ]
)

room_df = spark.createDataFrame(rooms, schema=schema_rooms)

room_df.show(truncate=False)
+-----------+-----------+
|primary_key|room       |
+-----------+-----------+
|1          |living room|
|1          |bath room  |
|1          |kitchen    |
|1          |bed room   |
|2          |living room|
|2          |bed room   |
|2          |kitchen    |
+-----------+-----------+

To create a custom test, we should create a pyspark DataFrame which contains the same primary_key column as the DataFrame to be tested using the DataFrameTester.

Let's create a boolean column that indicates whether the house has a bath room or not.

house_has_bath_room = room_df.groupBy("primary_key").agg(
    F.max(F.when(F.col("room") == "bath room", True).otherwise(False)).alias(
        "has_bath_room"
    )
)

house_has_bath_room.show(truncate=False)
+-----------+-------------+
|primary_key|has_bath_room|
+-----------+-------------+
|1          |true         |
|2          |false        |
+-----------+-------------+

We can add this 'custom test' to the DataFrameTester using add_custom_test_result.

In the background, all kinds of data validation checks are done by DataFrameTester to make sure that it fits the requirements to be added to the other test results.

df_tester.add_custom_test_result(
    result=house_has_bath_room,
    name="has_bath_room",
    description="House has a bath room",
    # fillna_value=0, # optional; by default null.
).show(truncate=False)
+-----------+-------------+
|primary_key|has_bath_room|
+-----------+-------------+
|1          |true         |
|2          |false        |
|3          |null         |
|4          |null         |
|5          |null         |
+-----------+-------------+

Despite that the data whether a house has a bath room is not available in the house DataFrame; we can still add the custom test to the DataFrameTester object.

df_tester.results.show(truncate=False)
+-----------+-----------------------+-------------------------------+-------------+
|primary_key|street__ValidStreetName|house_number__ValidNumericRange|has_bath_room|
+-----------+-----------------------+-------------------------------+-------------+
|1          |true                   |true                           |true         |
|2          |true                   |true                           |false        |
|3          |false                  |true                           |null         |
|4          |true                   |false                          |null         |
|5          |false                  |true                           |null         |
+-----------+-----------------------+-------------------------------+-------------+
df_tester.descriptions
{'street__ValidStreetName': 'street contains valid Dutch street name.',
 'house_number__ValidNumericRange': 'house_number__ValidNumericRange(min_value=0.0, max_value=inf)',
 'has_bath_room': 'House has a bath room'}

We can also get a summary of the test results using the .summary attribute.

df_tester.summary.show(truncate=False)
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+
|test                           |description                                                  |n_tests|n_passed|percentage_passed|n_failed|percentage_failed|
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+
|street__ValidStreetName        |street contains valid Dutch street name.                     |5      |3       |60.0             |2       |40.0             |
|house_number__ValidNumericRange|house_number__ValidNumericRange(min_value=0.0, max_value=inf)|5      |4       |80.0             |1       |20.0             |
|has_bath_room                  |House has a bath room                                        |2      |1       |50.0             |1       |50.0             |
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyspark_testframework-2.1.1.tar.gz (26.8 kB view details)

Uploaded Source

Built Distribution

pyspark_testframework-2.1.1-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file pyspark_testframework-2.1.1.tar.gz.

File metadata

  • Download URL: pyspark_testframework-2.1.1.tar.gz
  • Upload date:
  • Size: 26.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for pyspark_testframework-2.1.1.tar.gz
Algorithm Hash digest
SHA256 c915c56c0682f8eac7f363516c5ae5517f5a16d71bec78c8a41c23cbfaf13ae4
MD5 f1e4a0c44087f33229b7fd7c27b7fbf8
BLAKE2b-256 ab7935c3d02cc11479914104f977eea4009d5f78393a1bba83fc1feeb51dbcfb

See more details on using hashes here.

File details

Details for the file pyspark_testframework-2.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pyspark_testframework-2.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5517f91ebf6a991405a4f4af1f52b18f4665dc2771d3d6b67e21b99830e5d96f
MD5 59a344b2e484a0b5d52a2129b2fd84cb
BLAKE2b-256 48733cf73b8859b5813f36a826b758828e05e2c4810417f800dff48f178472be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page