Testframework for PySpark DataFrames
Project description
pyspark-testframework
⏳ Work in progress
The goal of the pyspark-testframework
is to provide a simple way to create tests for PySpark DataFrames. The test results are returned in DataFrame format as well.
Tutorial
Let's first create an example pyspark DataFrame
The data will contain the primary keys, street names and house numbers of some addresses.
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, IntegerType, StringType
from pyspark.sql import functions as F
# Initialize Spark session
spark = SparkSession.builder.appName("PySparkTestFrameworkTutorial").getOrCreate()
# Define the schema
schema = StructType(
[
StructField("primary_key", IntegerType(), True),
StructField("street", StringType(), True),
StructField("house_number", IntegerType(), True),
]
)
# Define the data
data = [
(1, "Rochussenstraat", 27),
(2, "Coolsingel", 31),
(3, "%Witte de Withstraat", 27),
(4, "Lijnbaan", -3),
(5, None, 13),
]
df = spark.createDataFrame(data, schema)
df.show(truncate=False)
+-----------+--------------------+------------+
|primary_key|street |house_number|
+-----------+--------------------+------------+
|1 |Rochussenstraat |27 |
|2 |Coolsingel |31 |
|3 |%Witte de Withstraat|27 |
|4 |Lijnbaan |-3 |
|5 |null |13 |
+-----------+--------------------+------------+
Import and initialize the DataFrameTester
from testframework.dataquality import DataFrameTester
df_tester = DataFrameTester(
df=df,
primary_key="primary_key",
spark=spark,
)
Import configurable tests
from testframework.dataquality.tests import ValidNumericRange, RegexTest
Initialize the RegexTest
to test for valid street names
valid_street_name = RegexTest(
name="ValidStreetName",
pattern=r"^[A-Z][a-zéèáàëï]*([ -][A-Z]?[a-zéèáàëï]*)*$",
)
Run valid_street_name
on the street column using the .test()
method of DataFrameTester
.
df_tester.test(
col="street",
test=valid_street_name,
nullable=False, # nullable, hence null values are converted to True
description="street contains valid Dutch street name.",
).show(truncate=False)
+-----------+--------------------+-----------------------+
|primary_key|street |street__ValidStreetName|
+-----------+--------------------+-----------------------+
|1 |Rochussenstraat |true |
|2 |Coolsingel |true |
|3 |%Witte de Withstraat|false |
|4 |Lijnbaan |true |
|5 |null |false |
+-----------+--------------------+-----------------------+
Run the IntegerString
test on the number column
df_tester.test(
col="house_number",
test=ValidNumericRange(
min_value=0,
),
nullable=True, # nullable, hence null values are converted to True
# description is optional, let's not define it for illustration purposes
).show()
+-----------+------------+-------------------------------+
|primary_key|house_number|house_number__ValidNumericRange|
+-----------+------------+-------------------------------+
| 1| 27| true|
| 2| 31| true|
| 3| 27| true|
| 4| -3| false|
| 5| 13| true|
+-----------+------------+-------------------------------+
Let's take a look at the test results of the DataFrame using the .results
attribute.
df_tester.results.show(truncate=False)
+-----------+-----------------------+-------------------------------+
|primary_key|street__ValidStreetName|house_number__ValidNumericRange|
+-----------+-----------------------+-------------------------------+
|1 |true |true |
|2 |true |true |
|3 |false |true |
|4 |true |false |
|5 |false |true |
+-----------+-----------------------+-------------------------------+
We can use .descriptions
or .descriptions_df
to get the descriptions of the tests.
This can be useful for reporting purposes. For example to create reports for the business with more detailed information than just the column name and the test name.
df_tester.descriptions
{'street__ValidStreetName': 'street contains valid Dutch street name.',
'house_number__ValidNumericRange': 'house_number__ValidNumericRange(min_value=0.0, max_value=inf)'}
df_tester.description_df.show(truncate=False)
+-------------------------------+-------------------------------------------------------------+
|test |description |
+-------------------------------+-------------------------------------------------------------+
|street__ValidStreetName |street contains valid Dutch street name. |
|house_number__ValidNumericRange|house_number__ValidNumericRange(min_value=0.0, max_value=inf)|
+-------------------------------+-------------------------------------------------------------+
Custom tests
Sometimes tests are too specific or complex to be covered by the configurable tests. That's why we can create custom tests and add them to the DataFrameTester
object.
Let's do this using a custom test which should tests that every house has a bath room. We'll start by creating a new DataFrame with rooms rather than houses.
rooms = [
(1, "living room"),
(1, "bath room"),
(1, "kitchen"),
(1, "bed room"),
(2, "living room"),
(2, "bed room"),
(2, "kitchen"),
]
schema_rooms = StructType(
[
StructField("primary_key", IntegerType(), True),
StructField("room", StringType(), True),
]
)
room_df = spark.createDataFrame(rooms, schema=schema_rooms)
room_df.show(truncate=False)
+-----------+-----------+
|primary_key|room |
+-----------+-----------+
|1 |living room|
|1 |bath room |
|1 |kitchen |
|1 |bed room |
|2 |living room|
|2 |bed room |
|2 |kitchen |
+-----------+-----------+
To create a custom test, we should create a pyspark DataFrame which contains the same primary_key column as the DataFrame to be tested using the DataFrameTester
.
Let's create a boolean column that indicates whether the house has a bath room or not.
house_has_bath_room = room_df.groupBy("primary_key").agg(
F.max(F.when(F.col("room") == "bath room", True).otherwise(False)).alias(
"has_bath_room"
)
)
house_has_bath_room.show(truncate=False)
+-----------+-------------+
|primary_key|has_bath_room|
+-----------+-------------+
|1 |true |
|2 |false |
+-----------+-------------+
We can add this 'custom test' to the DataFrameTester
using add_custom_test_result
.
In the background, all kinds of data validation checks are done by DataFrameTester
to make sure that it fits the requirements to be added to the other test results.
df_tester.add_custom_test_result(
result=house_has_bath_room,
name="has_bath_room",
description="House has a bath room",
# fillna_value=0, # optional; by default null.
).show(truncate=False)
+-----------+-------------+
|primary_key|has_bath_room|
+-----------+-------------+
|1 |true |
|2 |false |
|3 |null |
|4 |null |
|5 |null |
+-----------+-------------+
Despite that the data whether a house has a bath room is not available in the house DataFrame; we can still add the custom test to the DataFrameTester
object.
df_tester.results.show(truncate=False)
+-----------+-----------------------+-------------------------------+-------------+
|primary_key|street__ValidStreetName|house_number__ValidNumericRange|has_bath_room|
+-----------+-----------------------+-------------------------------+-------------+
|1 |true |true |true |
|2 |true |true |false |
|3 |false |true |null |
|4 |true |false |null |
|5 |false |true |null |
+-----------+-----------------------+-------------------------------+-------------+
df_tester.descriptions
{'street__ValidStreetName': 'street contains valid Dutch street name.',
'house_number__ValidNumericRange': 'house_number__ValidNumericRange(min_value=0.0, max_value=inf)',
'has_bath_room': 'House has a bath room'}
We can also get a summary of the test results using the .summary
attribute.
df_tester.summary.show(truncate=False)
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+
|test |description |n_tests|n_passed|percentage_passed|n_failed|percentage_failed|
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+
|street__ValidStreetName |street contains valid Dutch street name. |5 |3 |60.0 |2 |40.0 |
|house_number__ValidNumericRange|house_number__ValidNumericRange(min_value=0.0, max_value=inf)|5 |4 |80.0 |1 |20.0 |
|has_bath_room |House has a bath room |2 |1 |50.0 |1 |50.0 |
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyspark_testframework-2.1.1.tar.gz
.
File metadata
- Download URL: pyspark_testframework-2.1.1.tar.gz
- Upload date:
- Size: 26.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c915c56c0682f8eac7f363516c5ae5517f5a16d71bec78c8a41c23cbfaf13ae4 |
|
MD5 | f1e4a0c44087f33229b7fd7c27b7fbf8 |
|
BLAKE2b-256 | ab7935c3d02cc11479914104f977eea4009d5f78393a1bba83fc1feeb51dbcfb |
File details
Details for the file pyspark_testframework-2.1.1-py3-none-any.whl
.
File metadata
- Download URL: pyspark_testframework-2.1.1-py3-none-any.whl
- Upload date:
- Size: 17.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5517f91ebf6a991405a4f4af1f52b18f4665dc2771d3d6b67e21b99830e5d96f |
|
MD5 | 59a344b2e484a0b5d52a2129b2fd84cb |
|
BLAKE2b-256 | 48733cf73b8859b5813f36a826b758828e05e2c4810417f800dff48f178472be |