Skip to main content

Testframework for PySpark DataFrames

Project description

Build Status Version Ruff

pyspark-testframework

The goal of the pyspark-testframework is to provide a simple way to create tests for PySpark DataFrames. The test results are returned in DataFrame format as well.

Tutorial

Let's first create an example pyspark DataFrame

The data will contain the primary keys, street names and house numbers of some addresses.

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, IntegerType, StringType
from pyspark.sql import functions as F
# Initialize Spark session
spark = SparkSession.builder.appName("PySparkTestFrameworkTutorial").getOrCreate()

# Define the schema
schema = StructType(
    [
        StructField("id", IntegerType(), True),
        StructField("street", StringType(), True),
        StructField("house_number", IntegerType(), True),
    ]
)

# Define the data
data = [
    (1, "Rochussenstraat", 27),
    (2, "Coolsingel", 31),
    (3, "%Witte de Withstraat", 27),
    (4, "Lijnbaan", -3),
    (5, None, 13),
]

df = spark.createDataFrame(data, schema)

df.show(truncate=False)
+---+--------------------+------------+
|id |street              |house_number|
+---+--------------------+------------+
|1  |Rochussenstraat     |27          |
|2  |Coolsingel          |31          |
|3  |%Witte de Withstraat|27          |
|4  |Lijnbaan            |-3          |
|5  |null                |13          |
+---+--------------------+------------+

Import and initialize the DataFrameTester

from testframework.dataquality import DataFrameTester
df_tester = DataFrameTester(
    df=df,
    primary_key="id",
    spark=spark,
)

Import configurable tests

from testframework.dataquality.tests import ValidNumericRange, RegexTest

Initialize the RegexTest to test for valid street names

valid_street_format = RegexTest(
    name="ValidStreetFormat",
    pattern=r"^[A-Z][a-zéèáàëï]*([ -][A-Z]?[a-zéèáàëï]*)*$",
)

Run valid_street_format on the street column using the .test() method of DataFrameTester.

df_tester.test(
    col="street",
    test=valid_street_format,
    nullable=False,  # nullable is False, hence null values are converted to False
    description="Street is in valid Dutch street format.",
).show(truncate=False)
+---+--------------------+-------------------------+
|id |street              |street__ValidStreetFormat|
+---+--------------------+-------------------------+
|1  |Rochussenstraat     |true                     |
|2  |Coolsingel          |true                     |
|3  |%Witte de Withstraat|false                    |
|4  |Lijnbaan            |true                     |
|5  |null                |false                    |
+---+--------------------+-------------------------+

Run the IntegerString test on the number column

By setting the return_failed_rows parameter to True, we can get only the rows that failed the test.

df_tester.test(
    col="house_number",
    test=ValidNumericRange(
        min_value=1,
    ),
    nullable=False,
    # description="House number is in a valid format" # optional, let's not define it for illustration purposes
    return_failed_rows=True,  # only return the failed rows
).show()
+---+------------+-------------------------------+
| id|house_number|house_number__ValidNumericRange|
+---+------------+-------------------------------+
|  4|          -3|                          false|
+---+------------+-------------------------------+

Let's take a look at the test results of the DataFrame using the .results attribute.

df_tester.results.show(truncate=False)
+---+-------------------------+-------------------------------+
|id |street__ValidStreetFormat|house_number__ValidNumericRange|
+---+-------------------------+-------------------------------+
|1  |true                     |true                           |
|2  |true                     |true                           |
|3  |false                    |true                           |
|4  |true                     |false                          |
|5  |false                    |true                           |
+---+-------------------------+-------------------------------+

We can use .descriptions or .descriptions_df to get the descriptions of the tests.


This can be useful for reporting purposes. For example to create reports for the business with more detailed information than just the column name and the test name.
df_tester.descriptions
{'street__ValidStreetFormat': 'Street is in valid Dutch street format.',
 'house_number__ValidNumericRange': 'house_number__ValidNumericRange(min_value=1.0, max_value=inf)'}
df_tester.description_df.show(truncate=False)
+-------------------------------+-------------------------------------------------------------+
|test                           |description                                                  |
+-------------------------------+-------------------------------------------------------------+
|street__ValidStreetFormat      |Street is in valid Dutch street format.                      |
|house_number__ValidNumericRange|house_number__ValidNumericRange(min_value=1.0, max_value=inf)|
+-------------------------------+-------------------------------------------------------------+

Custom tests

Sometimes tests are too specific or complex to be covered by the configurable tests. That's why we can create custom tests and add them to the DataFrameTester object.

Let's do this using a custom test which should tests that every house has a bath room. We'll start by creating a new DataFrame with rooms rather than houses.

rooms = [
    (1,1, "living room"),
    (2,1, "bathroom"),
    (3,1, "kitchen"),
    (4,1, "bed room"),
    (5,2, "living room"),
    (6,2, "bed room"),
    (7,2, "kitchen"),
]

schema_rooms = StructType(
    [   StructField("id", IntegerType(), True),
        StructField("house_id", IntegerType(), True),
        StructField("room", StringType(), True),
    ]
)

room_df = spark.createDataFrame(rooms, schema=schema_rooms)

room_df.show(truncate=False)
+---+--------+-----------+
|id |house_id|room       |
+---+--------+-----------+
|1  |1       |living room|
|2  |1       |bathroom   |
|3  |1       |kitchen    |
|4  |1       |bed room   |
|5  |2       |living room|
|6  |2       |bed room   |
|7  |2       |kitchen    |
+---+--------+-----------+

To create a custom test, we should create a pyspark DataFrame which contains the same primary_key column as the DataFrame to be tested using the DataFrameTester.

Let's create a boolean column that indicates whether the house has a bath room or not.

house_has_bathroom = room_df.groupBy("house_id").agg(
    F.max(F.when(F.col("room") == "bathroom", True).otherwise(False)).alias(
        "has_bathroom"
    )
)

house_has_bathroom.show(truncate=False)
+--------+------------+
|house_id|has_bathroom|
+--------+------------+
|1       |true        |
|2       |false       |
+--------+------------+

We can add this 'custom test' to the DataFrameTester using add_custom_test_result.

In the background, all kinds of data validation checks are done by DataFrameTester to make sure that it fits the requirements to be added to the other test results.

df_tester.add_custom_test_result(
    result=house_has_bathroom.withColumnRenamed("house_id", "id"),
    name="has_bathroom",
    description="House has a bathroom",
    # fillna_value=0, # optional; by default null.
).show(truncate=False)
+---+------------+
|id |has_bathroom|
+---+------------+
|1  |true        |
|2  |false       |
|3  |null        |
|4  |null        |
|5  |null        |
+---+------------+

Despite that the data whether a house has a bath room is not available in the house DataFrame; we can still add the custom test to the DataFrameTester object.

df_tester.results.show(truncate=False)
+---+-------------------------+-------------------------------+------------+
|id |street__ValidStreetFormat|house_number__ValidNumericRange|has_bathroom|
+---+-------------------------+-------------------------------+------------+
|1  |true                     |true                           |true        |
|2  |true                     |true                           |false       |
|3  |false                    |true                           |null        |
|4  |true                     |false                          |null        |
|5  |false                    |true                           |null        |
+---+-------------------------+-------------------------------+------------+
df_tester.descriptions
{'street__ValidStreetFormat': 'Street is in valid Dutch street format.',
 'house_number__ValidNumericRange': 'house_number__ValidNumericRange(min_value=1.0, max_value=inf)',
 'has_bathroom': 'House has a bathroom'}

We can also get a summary of the test results using the .summary attribute.

df_tester.summary.show(truncate=False)
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+
|test                           |description                                                  |n_tests|n_passed|percentage_passed|n_failed|percentage_failed|
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+
|street__ValidStreetFormat      |Street is in valid Dutch street format.                      |5      |3       |60.0             |2       |40.0             |
|house_number__ValidNumericRange|house_number__ValidNumericRange(min_value=1.0, max_value=inf)|5      |4       |80.0             |1       |20.0             |
|has_bathroom                   |House has a bathroom                                         |2      |1       |50.0             |1       |50.0             |
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+

If you want to see all rows that failed any of the tests, you can use the .failed_tests attribute.

df_tester.failed_tests.show(truncate=False)
+---+-------------------------+-------------------------------+------------+
|id |street__ValidStreetFormat|house_number__ValidNumericRange|has_bathroom|
+---+-------------------------+-------------------------------+------------+
|2  |true                     |true                           |false       |
|3  |false                    |true                           |null        |
|4  |true                     |false                          |null        |
|5  |false                    |true                           |null        |
+---+-------------------------+-------------------------------+------------+

Of course, you can also see all rows that passed all tests using the .passed_tests attribute.

df_tester.passed_tests.show(truncate=False)
+---+-------------------------+-------------------------------+------------+
|id |street__ValidStreetFormat|house_number__ValidNumericRange|has_bathroom|
+---+-------------------------+-------------------------------+------------+
|1  |true                     |true                           |true        |
+---+-------------------------+-------------------------------+------------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyspark_testframework-2.3.1.tar.gz (28.0 kB view details)

Uploaded Source

Built Distribution

pyspark_testframework-2.3.1-py3-none-any.whl (18.3 kB view details)

Uploaded Python 3

File details

Details for the file pyspark_testframework-2.3.1.tar.gz.

File metadata

  • Download URL: pyspark_testframework-2.3.1.tar.gz
  • Upload date:
  • Size: 28.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyspark_testframework-2.3.1.tar.gz
Algorithm Hash digest
SHA256 718c40d79db5703b9e5edee584cebcf4f9503431d58861e3d4bc5a4cf995fab9
MD5 adad860291c00386a9a1ac49f804bfc1
BLAKE2b-256 48ef70f89b02035441e160e71a8c6a6b3fb288b04c4d0acfe609f8fc15457384

See more details on using hashes here.

File details

Details for the file pyspark_testframework-2.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pyspark_testframework-2.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 167124945645ce226911a1741c3a7e4fc41604a122c920f9e2d0234183504c5b
MD5 493ec75815e256639fef163630aa4542
BLAKE2b-256 996a9e0e0b0d07a3de27266aea4b57f62eaf32d4d52eea417a28c3ca9f855194

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page