Skip to main content

A python package that splits large files into smaller chunks.

Project description

Tutorial using the pysplit package

pysplit is a Python package used for splitting large files into smaller chunks.

Currently the default chunk size is 100MB. This size was chosen to work around GitHub's upload file size limit.

Install the latest version of pysplitter

Run the cell below to ensure you have the latest version of pysplitter installed on your machine.

# !pip install --upgrade pysplitter

Import required packages

import pysplitter as pysp
import numpy as np

Import helpful packages

import sys
import os

Create a numpy array that will exceed 100MB when saved to disk.

The numeric values of the data are not important. Random values were used for convenience only.

dim = 250
num = int(dim * dim * dim)
x = np.random.normal(size=num).reshape(dim, dim, dim)
x.shape
(250, 250, 250)

Save numpy array to disk and list directory contents

np.save('x.npy', x)
os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x.npy']

Display size of file on disk

size = os.path.getsize('x.npy')
print(f'{size / 1e6} MB')
125.000128 MB

As many people may know, GitHub will not allow files exceeding 100 MB to be uploaded.

Use the commands below to split the original (and too large) file into multiple .split files.

Currently the default split size is <= 100 MB, but this may become a variable paramter in furture distributions.

os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x(unsplit).npy',
 'x.npy']
src = 'x.npy'
pysp.split(src)
2 file(s) written.

Check file size of the two chunks that were just written.

os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x(unsplit).npy',
 'x.npy',
 'x0000.npy.split',
 'x0001.npy.split']
print(os.path.getsize('x0000.npy.split') / 1e6, 'MB')
100.0 MB
print(os.path.getsize('x0001.npy.split') / 1e6, 'MB')
25.000128 MB

As is clearly shown from the output of the above cells, both chunks are <= 100MB. This means that this data can now pushed to GitHub as any other file would.

Recombine the data chunks back into a single file

search_pattern = './x*.split'
dst = '.'
pysp.unsplit(search_pattern, dst, validate=True, orig_src=src)
File reconstructed without loss: True
os.listdir()
['.ipynb_checkpoints',
 '1-split-unsplit-tutorial.ipynb',
 'x(unsplit).npy',
 'x.npy',
 'x0000.npy.split',
 'x0001.npy.split']
x_unsplit = np.load('x(unsplit).npy')
x_unsplit.shape
(250, 250, 250)

Show that the manipulated data x_unsplit is the same as the original data x.

np.allclose(x, x_unsplit)
True

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysplitter-0.0.7.tar.gz (2.5 kB view details)

Uploaded Source

Built Distribution

pysplitter-0.0.7-py3-none-any.whl (2.5 kB view details)

Uploaded Python 3

File details

Details for the file pysplitter-0.0.7.tar.gz.

File metadata

  • Download URL: pysplitter-0.0.7.tar.gz
  • Upload date:
  • Size: 2.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200622 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for pysplitter-0.0.7.tar.gz
Algorithm Hash digest
SHA256 01a77f269e1e532250d010227cda323624311db98bc21c5dc3a38fe17d41f733
MD5 605ce6ce4fd47715ed53636ecc7dc95e
BLAKE2b-256 982efc9d95e2ed28979f272afe394a85147a9efb7e7d0e9d551147c5d7794c38

See more details on using hashes here.

File details

Details for the file pysplitter-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: pysplitter-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 2.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200622 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for pysplitter-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 9edbf33d273de47f5df9defbc2fefcec19fc8c7ffadb259ca2fdb7616f89a67a
MD5 55af4f8e290bf0ee0635f0b0d593fb8e
BLAKE2b-256 5c5c03497ed90331c20a460709f3301f9c3d3dd9f7e3a2939ddebba3fd5c6bc1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page