Skip to main content

Python wrapper for SSW alignment

Project description

# pyssw: python wrapper for Smith-Waterman Python Module

The C code for SWW alignment is derived from: [original source repository](https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library)

Please cite this [PLOS ONE paper](http://dx.plos.org/10.1371/journal.pone.0082138) by Zhao et al. 2013

## Overview

SSW is a fast implementation of the Smith-Waterman algorithm, which uses the Single-Instruction Multiple-Data (SIMD) instructions to parallelize the algorithm at the instruction level. It can return the Smith-Waterman score, alignment location and traceback path (cigar) of the optimal alignment accurately; and return the sub-optimal alignment score and location heuristically.

Note: When SSW open a gap, the gap open penalty alone is applied.

## Installation

from [PyPi](https://pypi.org/project/pyssw/)

pip install pyssw

or from source

git clone https://github.com/Runsheng/pyssw.git cd pyssw pip install .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyssw-0.1.7-cp311-cp311-manylinux1_x86_64.whl (14.3 kB view details)

Uploaded CPython 3.11

pyssw-0.1.7-cp310-cp310-manylinux1_x86_64.whl (14.3 kB view details)

Uploaded CPython 3.10

pyssw-0.1.7-cp39-cp39-manylinux1_x86_64.whl (14.6 kB view details)

Uploaded CPython 3.9

pyssw-0.1.7-cp38-cp38-manylinux1_x86_64.whl (14.3 kB view details)

Uploaded CPython 3.8

File details

Details for the file pyssw-0.1.7-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyssw-0.1.7-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cea0b74cf0f8ce6af7eb85a8b0ef7416e1b7e185d29f422aaf46f2485014866f
MD5 15578528bf6c925281ffcbe97d0d5d8f
BLAKE2b-256 0e3fd1c58d867164a4ad484d5c0fd426b1493a22ef162dd8d0a1124d388268ab

See more details on using hashes here.

File details

Details for the file pyssw-0.1.7-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyssw-0.1.7-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 abb9b24df5c91121318f61c63ce25a386268a9e2c20ec226fef632f2b00e1833
MD5 51200462c78ff57f41c4dd93c3b29826
BLAKE2b-256 07001a9ab755eb2754e3627cabb80a8c6bba04736afb4479a213f4f9d0777c15

See more details on using hashes here.

File details

Details for the file pyssw-0.1.7-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyssw-0.1.7-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 05a88b0dd3fde8b23bdc27e2dd7069e3de860ba619873482dd5e9c037d7a1e8e
MD5 4acd4d9b7f122448e6704013f5d9ce31
BLAKE2b-256 5e927e5c75392a664805802736091484577a4e47f6dab6bf413aa0647c8ff4ab

See more details on using hashes here.

File details

Details for the file pyssw-0.1.7-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyssw-0.1.7-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d6307aaac6891ead09a9388f9fc700affc73b8fb492e03278a4ee78fac1abb1f
MD5 f8b090b6a4bc25b9cde3d1cff563652c
BLAKE2b-256 417520e114ecf64f2fcba57c318294c636e2afefb1c2d21cc85d23ea98c6a73c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page