Python wrapper for SSW alignment
Project description
# pyssw: python wrapper for Smith-Waterman Python Module
The C code for SWW alignment is derived from: [original source repository](https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library)
Please cite this [PLOS ONE paper](http://dx.plos.org/10.1371/journal.pone.0082138) by Zhao et al. 2013
## Overview
SSW is a fast implementation of the Smith-Waterman algorithm, which uses the Single-Instruction Multiple-Data (SIMD) instructions to parallelize the algorithm at the instruction level. It can return the Smith-Waterman score, alignment location and traceback path (cigar) of the optimal alignment accurately; and return the sub-optimal alignment score and location heuristically.
Note: When SSW open a gap, the gap open penalty alone is applied.
## Installation
from [PyPi](https://pypi.org/project/pyssw/)
pip install pyssw
or from source
git clone https://github.com/Runsheng/pyssw.git cd pyssw pip install .
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file pyssw-0.1.7-cp311-cp311-manylinux1_x86_64.whl
.
File metadata
- Download URL: pyssw-0.1.7-cp311-cp311-manylinux1_x86_64.whl
- Upload date:
- Size: 14.3 kB
- Tags: CPython 3.11
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cea0b74cf0f8ce6af7eb85a8b0ef7416e1b7e185d29f422aaf46f2485014866f |
|
MD5 | 15578528bf6c925281ffcbe97d0d5d8f |
|
BLAKE2b-256 | 0e3fd1c58d867164a4ad484d5c0fd426b1493a22ef162dd8d0a1124d388268ab |
File details
Details for the file pyssw-0.1.7-cp310-cp310-manylinux1_x86_64.whl
.
File metadata
- Download URL: pyssw-0.1.7-cp310-cp310-manylinux1_x86_64.whl
- Upload date:
- Size: 14.3 kB
- Tags: CPython 3.10
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | abb9b24df5c91121318f61c63ce25a386268a9e2c20ec226fef632f2b00e1833 |
|
MD5 | 51200462c78ff57f41c4dd93c3b29826 |
|
BLAKE2b-256 | 07001a9ab755eb2754e3627cabb80a8c6bba04736afb4479a213f4f9d0777c15 |
File details
Details for the file pyssw-0.1.7-cp39-cp39-manylinux1_x86_64.whl
.
File metadata
- Download URL: pyssw-0.1.7-cp39-cp39-manylinux1_x86_64.whl
- Upload date:
- Size: 14.6 kB
- Tags: CPython 3.9
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 05a88b0dd3fde8b23bdc27e2dd7069e3de860ba619873482dd5e9c037d7a1e8e |
|
MD5 | 4acd4d9b7f122448e6704013f5d9ce31 |
|
BLAKE2b-256 | 5e927e5c75392a664805802736091484577a4e47f6dab6bf413aa0647c8ff4ab |
File details
Details for the file pyssw-0.1.7-cp38-cp38-manylinux1_x86_64.whl
.
File metadata
- Download URL: pyssw-0.1.7-cp38-cp38-manylinux1_x86_64.whl
- Upload date:
- Size: 14.3 kB
- Tags: CPython 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d6307aaac6891ead09a9388f9fc700affc73b8fb492e03278a4ee78fac1abb1f |
|
MD5 | f8b090b6a4bc25b9cde3d1cff563652c |
|
BLAKE2b-256 | 417520e114ecf64f2fcba57c318294c636e2afefb1c2d21cc85d23ea98c6a73c |