Python interface to Stan, a package for Bayesian inference
Project description
PyStan provides a Python interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.
For more information on Stan and its modeling language, see the Stan User’s Guide and Reference Manual. PyStan has an interface similar to that of RStan. For an introduction to Stan visit http://mc-stan.org/.
PyStan aims to reproduce the functionality present in RStan. There are a few features present in RStan that have yet to be implemented in PyStan. If you find a feature missing that you use frequently please file a bug report so developers can better direct their efforts.
Important links
HTML documentation: https://pystan.readthedocs.org
Issue tracker: https://github.com/stan-dev/pystan/issues
Source code repository: https://github.com/stan-dev/pystan
Stan: http://mc-stan.org/
Similar projects
Installation
NumPy and Cython (version 0.19.1 or greater) are required. matplotlib is optional.
PyStan and the required packages may be installed from the Python Package Index using pip.
pip install numpy Cython pip install pystan
Alternatively, if Cython (version 0.19 or greater) and NumPy are already available, PyStan may be installed from source with the following commands
git clone https://github.com/stan-dev/pystan.git cd pystan python setup.py install
If you encounter an ImportError after compiling from source, try changing out of the source directory before attempting import pystan. For example, on Linux and OS X cd /tmp would work.
Example
import pystan import numpy as np schools_code = """ data { int<lower=0> J; // number of schools real y[J]; // estimated treatment effects real<lower=0> sigma[J]; // s.e. of effect estimates } parameters { real mu; real<lower=0> tau; real eta[J]; } transformed parameters { real theta[J]; for (j in 1:J) theta[j] <- mu + tau * eta[j]; } model { eta ~ normal(0, 1); y ~ normal(theta, sigma); } """ schools_dat = {'J': 8, 'y': [28, 8, -3, 7, -1, 1, 18, 12], 'sigma': [15, 10, 16, 11, 9, 11, 10, 18]} fit = pystan.stan(model_code=schools_code, data=schools_dat, iter=1000, chains=4) print(fit) eta = fit.extract(permuted=True)['eta'] np.mean(eta, axis=0) # if matplotlib is installed (optional, not required), a visual summary and # traceplot are available fit.plot()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pystan-2.0.1.1.tar.gz
.
File metadata
- Download URL: pystan-2.0.1.1.tar.gz
- Upload date:
- Size: 16.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a2caa87d54f07c3000bc851be40b2808fbe82d0c2c68f6403daf987b5cf11ed7 |
|
MD5 | 240fa18736be0c1c906d8e7398d9535e |
|
BLAKE2b-256 | 64f2792fc507e326096b47ebd30a582f950b89970442354b910e00f4be9c6228 |