Skip to main content

Python interface to Stan, a package for Bayesian inference

Project description

Stan logo

pypi version travis-ci build status crate.io

PyStan provides a Python interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.

For more information on Stan and its modeling language, see the Stan User’s Guide and Reference Manual. PyStan has an interface similar to that of RStan. For an introduction to Stan visit http://mc-stan.org/.

PyStan aims to reproduce the functionality present in RStan. There are a few features present in RStan that have yet to be implemented in PyStan. If you find a feature missing that you use frequently please file a bug report so developers can better direct their efforts.

Similar projects

Installation

NumPy and Cython (version 0.19.1 or greater) are required. matplotlib is optional.

PyStan and the required packages may be installed from the Python Package Index using pip.

pip install numpy Cython
pip install pystan

Alternatively, if Cython (version 0.19 or greater) and NumPy are already available, PyStan may be installed from source with the following commands

git clone https://github.com/stan-dev/pystan.git
cd pystan
python setup.py install

If you encounter an ImportError after compiling from source, try changing out of the source directory before attempting import pystan. For example, on Linux and OS X cd /tmp would work.

Example

import pystan
import numpy as np

schools_code = """
data {
    int<lower=0> J; // number of schools
    real y[J]; // estimated treatment effects
    real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
    real mu;
    real<lower=0> tau;
    real eta[J];
}
transformed parameters {
    real theta[J];
    for (j in 1:J)
        theta[j] <- mu + tau * eta[j];
}
model {
    eta ~ normal(0, 1);
    y ~ normal(theta, sigma);
}
"""

schools_dat = {'J': 8,
               'y': [28,  8, -3,  7, -1,  1, 18, 12],
               'sigma': [15, 10, 16, 11,  9, 11, 10, 18]}

fit = pystan.stan(model_code=schools_code, data=schools_dat,
                  iter=1000, chains=4)

print(fit)

eta = fit.extract(permuted=True)['eta']
np.mean(eta, axis=0)

# if matplotlib is installed (optional, not required), a visual summary and
# traceplot are available
fit.plot()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystan-2.0.1.1.tar.gz (16.9 MB view details)

Uploaded Source

File details

Details for the file pystan-2.0.1.1.tar.gz.

File metadata

  • Download URL: pystan-2.0.1.1.tar.gz
  • Upload date:
  • Size: 16.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pystan-2.0.1.1.tar.gz
Algorithm Hash digest
SHA256 a2caa87d54f07c3000bc851be40b2808fbe82d0c2c68f6403daf987b5cf11ed7
MD5 240fa18736be0c1c906d8e7398d9535e
BLAKE2b-256 64f2792fc507e326096b47ebd30a582f950b89970442354b910e00f4be9c6228

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page