Python interface to Stan, a package for Bayesian inference
Project description
PyStan provides a Python interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.
For more information on Stan and its modeling language, see the Stan User’s Guide and Reference Manual at http://mc-stan.org/.
Important links
HTML documentation: https://pystan.readthedocs.org
Issue tracker: https://github.com/stan-dev/pystan/issues
Source code repository: https://github.com/stan-dev/pystan
Stan: http://mc-stan.org/
Stan User’s Guide and Reference Manual (pdf) available at http://mc-stan.org
Similar projects
PyStan3 / Stan3
The development of PyStan3 with updated API can be found under stan-dev/pystan-next
Detailed Installation Instructions
Detailed installation instructions can be found in the doc/installation_beginner.md file.
Windows Installation Instructions
Detailed installation instructions for Windows can be found in docs under PyStan on Windows
Quick Installation (Linux and macOS)
NumPy and Cython (version 0.22 or greater) are required. matplotlib is optional. ArviZ is recommended for visualization and analysis.
PyStan and the required packages may be installed from the Python Package Index using pip.
pip install pystan
Alternatively, if Cython (version 0.22 or greater) and NumPy are already available, PyStan may be installed from source with the following commands
git clone --recursive https://github.com/stan-dev/pystan.git cd pystan python setup.py install
To install latest development version user can also use pip
pip install git+https://github.com/stan-dev/pystan
If you encounter an ImportError after compiling from source, try changing out of the source directory before attempting import pystan. On Linux and OS X cd /tmp will work.
Example
import pystan
import numpy as np
import matplotlib.pyplot as plt
schools_code = """
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
real eta[J];
}
transformed parameters {
real theta[J];
for (j in 1:J)
theta[j] = mu + tau * eta[j];
}
model {
eta ~ normal(0, 1);
y ~ normal(theta, sigma);
}
"""
schools_dat = {'J': 8,
'y': [28, 8, -3, 7, -1, 1, 18, 12],
'sigma': [15, 10, 16, 11, 9, 11, 10, 18]}
sm = pystan.StanModel(model_code=schools_code)
fit = sm.sampling(data=schools_dat, iter=1000, chains=4)
print(fit)
eta = fit.extract(permuted=True)['eta']
np.mean(eta, axis=0)
# if matplotlib is installed (optional, not required), a visual summary and
# traceplot are available
fit.plot()
plt.show()
# updated traceplot can be plotted with
import arviz as az
az.plot_trace(fit)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for pystan-2.19.1.1-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d8c2ae05d1dca854a55b2ae9276af5866e473fb8264d03d5267abadb3c602da |
|
MD5 | 1fbad4855f9b1bc7a82f4664d4d17ca2 |
|
BLAKE2b-256 | e37bba001a1e29e297a033c6a110ab80914bc4a2ed0a1aaec4c0224d56dfbbfe |
Hashes for pystan-2.19.1.1-cp38-cp38-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f16c399da3d9d72e9661b131c23d51a59c789416598885714813fcb552234c83 |
|
MD5 | 6b49974c1b092933e80364b7949e86c6 |
|
BLAKE2b-256 | 50083e7a39ac73b7e0b43941e09c09e78dd256254df44e026beb207e7836d785 |
Hashes for pystan-2.19.1.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e8e0924c318a0ea67260167a74f040078a4ce0d3fd4a7d566aa76f7752a85fab |
|
MD5 | 268d4280cffce8b681099b9e6be76dac |
|
BLAKE2b-256 | 0502cab8f6c9c171eae62b74049fce07d431c2033e9d6d7b068695d2ca7d7f3d |
Hashes for pystan-2.19.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 837a62976b32e4fd2bd48fee3b419c651e19747280e440d5934bea3822b22115 |
|
MD5 | b5856f9b723a001f696758178fa29974 |
|
BLAKE2b-256 | 58668b4f649d61871f9e7c8ea0e2bf1851c5c3fe5135dabbbf401607bdd66e96 |
Hashes for pystan-2.19.1.1-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3622520b2e55d2ce70a3027d9910b6197a8bc2ef59e01967be9c4e607a48a9c1 |
|
MD5 | 2e67c76a66483fe2c002d9fc3f671eff |
|
BLAKE2b-256 | 16f9fd70954890d5110a663139d8cb015a9ead713798db06cc2dc784635bb9f0 |
Hashes for pystan-2.19.1.1-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b2ef9031dfbd65757828e2441cb9a76c9217fb5bb93817fee2550722e7a785b3 |
|
MD5 | 4c6cbbd844a3fa671e42a249b438e56c |
|
BLAKE2b-256 | d655dcbe7b3a3c67e5de5577d3bcc5eda3545b33c01b4553180a18a1d956ffb6 |
Hashes for pystan-2.19.1.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b44502aaa8866e0bcc81df1537e7e08b74aaf4cc9d4bf43e7c8b168f3568ca6 |
|
MD5 | 00b4ef621089a485aed9b23eb78ad9b6 |
|
BLAKE2b-256 | 9fcc4e88a34a015aa7aa459220bd18429f3ac6b15c703465fc7c411989f04ccc |
Hashes for pystan-2.19.1.1-cp37-cp37m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b67008f5780c7cf0f3fbad5bc54bc9919efc9655d63e0314dc013e85c7a0f14 |
|
MD5 | 5f88649098ee7118af743dd6fb436a18 |
|
BLAKE2b-256 | 66cecacc6174b65d9e059725ccf8bb6b9653fb7174048a759de7fe639d9a7171 |
Hashes for pystan-2.19.1.1-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bc1193f52bc6c6419dd753bcb0b6958b24fe588dc3da3c7f70bd23dcbda6ec2a |
|
MD5 | c8c2d39c1611061c23eea1d5430c4c1a |
|
BLAKE2b-256 | 7c8bb008aed4988f8eefbf1f5bbbdabcf4cd8ca4e9965d55121e755303ed5d82 |
Hashes for pystan-2.19.1.1-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 61340356889547e29e2e6db7ef28f821b91e73fee80a888e81a794a24a249987 |
|
MD5 | 30f7bfda49e11cdd4d57849481fc79c6 |
|
BLAKE2b-256 | 2b8d11454c8251f950e8e354c91a5aff93183e0d19ff4aa2b52a7c78958967fa |
Hashes for pystan-2.19.1.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5020ac3ca3a840f428f090fc5fe75412e2a7948ac7e3de59f4bbfd7a4539c0ef |
|
MD5 | 5c961b6b020947a0bc0300ea2ac2be3e |
|
BLAKE2b-256 | b997a613a98b72090e36b3bc5edc56977596038986cd224a2ae651c4c6a688b3 |
Hashes for pystan-2.19.1.1-cp36-cp36m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e9fbbf10dfc0ef8e7343ee4a3e17fd5c214fb12fc42615673e14908949b410e4 |
|
MD5 | 9b54139ddec0edcf3223d0a18fa25955 |
|
BLAKE2b-256 | 6bed54937aeb274a73807588100127609fbc3e6f7cc2453ae5e4704b2858181a |
Hashes for pystan-2.19.1.1-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c87bd98db2b5c67fa08177de04c98b46d1fcd68ae53dbe55ffc5187868068002 |
|
MD5 | 9574a1b4ec2a6db2906863022d8e9c2a |
|
BLAKE2b-256 | 8a59551cddce4f4b9014f150c443a14843f6e76e3d0f131086339d88a463da12 |
Hashes for pystan-2.19.1.1-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6580cec2f5ed1bdb44eab83d54fe87b11e673ed65d6c2064d8d9f76265ce049 |
|
MD5 | 02c1c8464cdbeed4af9f69a5b6e1e7fa |
|
BLAKE2b-256 | 98a35a81eb82c002105ff5268f6fe4719c46f45c8c49cd862f8d8ddabf08d429 |
Hashes for pystan-2.19.1.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43fdd98561f0cba0637f1fa343ed7d5adc885d04a655ab6302dbfd08f016105d |
|
MD5 | 23be1b1e5bed2d5bae9bfad1ab3d2c27 |
|
BLAKE2b-256 | 54a67b76455318c958b30c31fd5dc16fb29ab148d80884418283a942f65eb217 |
Hashes for pystan-2.19.1.1-cp35-cp35m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1127522641533a6ccb7684d4008d06c092cbe6f3ee7d44679a87937ee39093ab |
|
MD5 | 4cbb46f6200cdd9dc1c87b8ad8d514ff |
|
BLAKE2b-256 | d074c6e6d5f46dc8f51f10f848785ddc72e0c2e233f094d0787abba42c8c6b93 |
Hashes for pystan-2.19.1.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6c4bbbb0a59144135d9821f2b9c308bfdf70aa61befdc7dc435f4c86bfb4457e |
|
MD5 | 60e343593f1cb8ef9ed1a62795600a14 |
|
BLAKE2b-256 | f367983a2de85fe82b7c2813fe01801edca19c6f193db8cc5903e684f77ce870 |
Hashes for pystan-2.19.1.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2baa4106ddc7fb90712bd0e5ab8693ce130b001c6166839247511326edc6d0ba |
|
MD5 | beeb445ef9854f31fdd6bd401332e681 |
|
BLAKE2b-256 | cebd449fb3b6d5a04cc908c343d3546e425e00a829a13c185c9a627a9f0e8bd3 |
Hashes for pystan-2.19.1.1-cp27-cp27m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a0820df5fcd13c7a4cae75d59809adee72d1135a604dc2b5f068d4ac8ca349e |
|
MD5 | e041810130f3bee313a133bcb6352cb2 |
|
BLAKE2b-256 | 58ef51902e2bbdb8ea2aa7f1d97c78bc08348b5e4b70dd9659ec8231c0500b6a |