Skip to main content

Python interface to Stan, a package for Bayesian inference

Project description

Stan logo

pypi version travis-ci build status pypi download statistics

PyStan provides a Python interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.

For more information on Stan and its modeling language, see the Stan User’s Guide and Reference Manual at http://mc-stan.org/.

Similar projects

Installation

NumPy and Cython (version 0.19 or greater) are required. matplotlib is optional.

PyStan and the required packages may be installed from the Python Package Index using pip.

pip install pystan

Alternatively, if Cython (version 0.19 or greater) and NumPy are already available, PyStan may be installed from source with the following commands

git clone https://github.com/stan-dev/pystan.git
cd pystan
python setup.py install

If you encounter an ImportError after compiling from source, try changing out of the source directory before attempting import pystan. For example, on Linux and OS X cd /tmp would work.

Example

import pystan
import numpy as np

schools_code = """
data {
    int<lower=0> J; // number of schools
    real y[J]; // estimated treatment effects
    real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
    real mu;
    real<lower=0> tau;
    real eta[J];
}
transformed parameters {
    real theta[J];
    for (j in 1:J)
        theta[j] <- mu + tau * eta[j];
}
model {
    eta ~ normal(0, 1);
    y ~ normal(theta, sigma);
}
"""

schools_dat = {'J': 8,
               'y': [28,  8, -3,  7, -1,  1, 18, 12],
               'sigma': [15, 10, 16, 11,  9, 11, 10, 18]}

fit = pystan.stan(model_code=schools_code, data=schools_dat,
                  iter=1000, chains=4)

print(fit)

eta = fit.extract(permuted=True)['eta']
np.mean(eta, axis=0)

# if matplotlib is installed (optional, not required), a visual summary and
# traceplot are available
fit.plot()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystan-2.4.0.1.tar.gz (10.5 MB view details)

Uploaded Source

Built Distributions

pystan-2.4.0.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (47.0 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pystan-2.4.0.1-cp34-cp34m-macosx_10_5_x86_64.whl (26.8 MB view details)

Uploaded CPython 3.4m macOS 10.5+ x86-64

pystan-2.4.0.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (47.0 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pystan-2.4.0.1-cp33-cp33m-macosx_10_5_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.3m macOS 10.5+ x86-64

pystan-2.4.0.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (47.0 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pystan-2.4.0.1-cp27-none-macosx_10_5_x86_64.whl (26.8 MB view details)

Uploaded CPython 2.7 macOS 10.5+ x86-64

File details

Details for the file pystan-2.4.0.1.tar.gz.

File metadata

  • Download URL: pystan-2.4.0.1.tar.gz
  • Upload date:
  • Size: 10.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pystan-2.4.0.1.tar.gz
Algorithm Hash digest
SHA256 6fd6a5b1941d627e6b098a26eb4a2662240ea0291cd445734f2bbd0775026818
MD5 a4917fced1e0b6cc5d92f36044b913c6
BLAKE2b-256 c96f5411b067b330c9ccf7f25a7d269d8f6aebcdecb4ac57b7a48eccc3efd3b4

See more details on using hashes here.

File details

Details for the file pystan-2.4.0.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.4.0.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d8b1df174ad195b468e6c66e7d45d2a56da7e99e018535e19434e556d7e1fec
MD5 de8c81731eff63d5dee9454a079b487f
BLAKE2b-256 8ae4c2fd6005980da75a1cae1e3e76012e700784a38cb4dff8685eaeb60d5012

See more details on using hashes here.

File details

Details for the file pystan-2.4.0.1-cp34-cp34m-macosx_10_5_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.4.0.1-cp34-cp34m-macosx_10_5_x86_64.whl
Algorithm Hash digest
SHA256 b27d3896da3236920d17469f00c050bd5be932449e5c613449dabbec7fb17001
MD5 da4a26c116c2881e5710b2075527897a
BLAKE2b-256 fe5a9f61b8cb7c49804cf58946255483061996677ea63d7288b00aa7ed1ba535

See more details on using hashes here.

File details

Details for the file pystan-2.4.0.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.4.0.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 196c3355a7af67aa381d7775e8abb2f9e127b3a53d4f948476eb8bfc081d7346
MD5 725bc347fb32ab7d6ffaf81fd716f14e
BLAKE2b-256 083dedd3f79c3292f74d7c055a3601ee91bf893dc737090d01b9b67030fccbc6

See more details on using hashes here.

File details

Details for the file pystan-2.4.0.1-cp33-cp33m-macosx_10_5_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.4.0.1-cp33-cp33m-macosx_10_5_x86_64.whl
Algorithm Hash digest
SHA256 e1350f1c1c10efa1a01f1dc7b6d1323710d89498c19df7ab6c5c57c15acaf2fc
MD5 2df22fba4b81d250db4fa1168d829f81
BLAKE2b-256 2cb39c4270c1ab6131f65ee1f5ca9955058abd68c53b74d56a85294b9d067ca3

See more details on using hashes here.

File details

Details for the file pystan-2.4.0.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.4.0.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c0b7c6487e2bcd0e9188767ef4f115ddaf3d779a3fe565831a7d4b4bb62930c6
MD5 a1566e0691a969aeae6ed3b0d808f84b
BLAKE2b-256 73ef502f49e62ffba06bc3774a236b9352d39f1c8916427eef26da2b587a6109

See more details on using hashes here.

File details

Details for the file pystan-2.4.0.1-cp27-none-macosx_10_5_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.4.0.1-cp27-none-macosx_10_5_x86_64.whl
Algorithm Hash digest
SHA256 5ce6c3fa24e9afe73e058436479fcf5342b4fa20682814de91bb7e3d17e6d3c7
MD5 644edf162c71233029dd5f1f1b913d0f
BLAKE2b-256 47c8a75cc51313a67e5a63296a0f97b874e4399f20c5033cae322de5dedd28a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page