Skip to main content

Python interface to Stan, a package for Bayesian inference

Project description

Stan logo

pypi version travis-ci build status pypi download statistics

PyStan provides a Python interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.

For more information on Stan and its modeling language, see the Stan User’s Guide and Reference Manual at http://mc-stan.org/.

Similar projects

Installation

NumPy and Cython (version 0.19 or greater) are required. matplotlib is optional.

PyStan and the required packages may be installed from the Python Package Index using pip.

pip install pystan

Alternatively, if Cython (version 0.19 or greater) and NumPy are already available, PyStan may be installed from source with the following commands

git clone https://github.com/stan-dev/pystan.git
cd pystan
python setup.py install

If you encounter an ImportError after compiling from source, try changing out of the source directory before attempting import pystan. On Linux and OS X cd /tmp will work.

Example

import pystan
import numpy as np

schools_code = """
data {
    int<lower=0> J; // number of schools
    real y[J]; // estimated treatment effects
    real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
    real mu;
    real<lower=0> tau;
    real eta[J];
}
transformed parameters {
    real theta[J];
    for (j in 1:J)
        theta[j] <- mu + tau * eta[j];
}
model {
    eta ~ normal(0, 1);
    y ~ normal(theta, sigma);
}
"""

schools_dat = {'J': 8,
               'y': [28,  8, -3,  7, -1,  1, 18, 12],
               'sigma': [15, 10, 16, 11,  9, 11, 10, 18]}

fit = pystan.stan(model_code=schools_code, data=schools_dat,
                  iter=1000, chains=4)

print(fit)

eta = fit.extract(permuted=True)['eta']
np.mean(eta, axis=0)

# if matplotlib is installed (optional, not required), a visual summary and
# traceplot are available
fit.plot()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystan-2.4.0.3.tar.gz (10.6 MB view details)

Uploaded Source

Built Distributions

pystan-2.4.0.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (47.4 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pystan-2.4.0.3-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (47.4 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pystan-2.4.0.3-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (47.4 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pystan-2.4.0.3.tar.gz.

File metadata

  • Download URL: pystan-2.4.0.3.tar.gz
  • Upload date:
  • Size: 10.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pystan-2.4.0.3.tar.gz
Algorithm Hash digest
SHA256 9e2ffcc971f93221ee2fb678f3fe21a00d814a1b6ce75418ff4e09953d305bf4
MD5 535a65e44b59430153134d1d802683e5
BLAKE2b-256 77611c0cfcb04335c8135878cc624ee1925b00cfbd8a1b09e0e1c21827c75f30

See more details on using hashes here.

File details

Details for the file pystan-2.4.0.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.4.0.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 984dd39046ffa5e3f2030a568b54a313f8c2807ea23efa7d8ec3ceedf6be968e
MD5 d965148d8ecba07ca735f96e4402fba8
BLAKE2b-256 d4c652f1d8667481f742f6f2bfe7011e5125094070e9b02dafa46087419d6386

See more details on using hashes here.

File details

Details for the file pystan-2.4.0.3-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.4.0.3-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bd6fa8f909da4a32805bfbd0df6c3d2636eba7df18f9879428b3265d84579b0b
MD5 ab5021d139d3626d7bf391f36129f809
BLAKE2b-256 3f261abbbd1280432ec048c10d7daef83294f61e03fcfe4b0a8b7d006af90d35

See more details on using hashes here.

File details

Details for the file pystan-2.4.0.3-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.4.0.3-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7d304b2b769316b547a77976e9d0ceffe8456a4ed5dcfd92ca6a601046dc8f93
MD5 0d28f41d5e055ec6f5ba23e84264fbdd
BLAKE2b-256 daa826d1b8f4987a4d66e0f6f2ce38bc0108f8e60cb115be8bf6245d11ee0676

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page