Skip to main content

Python interface to Stan, a package for Bayesian inference

Project description

Stan logo

pypi version travis-ci build status pypi download statistics

PyStan provides a Python interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.

For more information on Stan and its modeling language, see the Stan User’s Guide and Reference Manual at http://mc-stan.org/.

Similar projects

Installation

NumPy and Cython (version 0.19 or greater) are required. matplotlib is optional.

PyStan and the required packages may be installed from the Python Package Index using pip.

pip install pystan

Alternatively, if Cython (version 0.19 or greater) and NumPy are already available, PyStan may be installed from source with the following commands

git clone --recursive https://github.com/stan-dev/pystan.git
cd pystan
python setup.py install

If you encounter an ImportError after compiling from source, try changing out of the source directory before attempting import pystan. On Linux and OS X cd /tmp will work.

Example

import pystan
import numpy as np

schools_code = """
data {
    int<lower=0> J; // number of schools
    real y[J]; // estimated treatment effects
    real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
    real mu;
    real<lower=0> tau;
    real eta[J];
}
transformed parameters {
    real theta[J];
    for (j in 1:J)
        theta[j] <- mu + tau * eta[j];
}
model {
    eta ~ normal(0, 1);
    y ~ normal(theta, sigma);
}
"""

schools_dat = {'J': 8,
               'y': [28,  8, -3,  7, -1,  1, 18, 12],
               'sigma': [15, 10, 16, 11,  9, 11, 10, 18]}

fit = pystan.stan(model_code=schools_code, data=schools_dat,
                  iter=1000, chains=4)

print(fit)

eta = fit.extract(permuted=True)['eta']
np.mean(eta, axis=0)

# if matplotlib is installed (optional, not required), a visual summary and
# traceplot are available
fit.plot()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystan-2.5.0.1.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

pystan-2.5.0.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (46.4 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pystan-2.5.0.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (46.4 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pystan-2.5.0.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (46.4 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pystan-2.5.0.1.tar.gz.

File metadata

  • Download URL: pystan-2.5.0.1.tar.gz
  • Upload date:
  • Size: 11.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pystan-2.5.0.1.tar.gz
Algorithm Hash digest
SHA256 c5b79fb23184440a34496feae4ebb3bbefc8d51bbf17456146c8a75bda03d724
MD5 b53ba804147338288fce0f23da428871
BLAKE2b-256 6d8b9dd4bcf13329de79c87a475190cbc3d8a1db783669ed825b4c5286e87a97

See more details on using hashes here.

Provenance

File details

Details for the file pystan-2.5.0.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.5.0.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c7203cb4e5dab3defc1f23c041c813e1fc8cdb453830c3d57a554296c35280ae
MD5 da412a64b3aae83dcff12148b4413c9d
BLAKE2b-256 13d10107c6e228504d16b5bd7d680d8daa8ab5434033abb571f12d87cae188ff

See more details on using hashes here.

Provenance

File details

Details for the file pystan-2.5.0.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.5.0.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 adcce90a14aba82945fc971f9a314e89baa501f6186634e7fb175d4f4739067b
MD5 48efcd77ffbd2b741084b5e86f0564a2
BLAKE2b-256 1bfc841b6d7557a47dd3ecd5c49da8ed79b36e1f20d325a7794d914320e425a3

See more details on using hashes here.

Provenance

File details

Details for the file pystan-2.5.0.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.5.0.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40da220e4b338e66ca554e133de2a20ddefffb610173288d8978a5b42c87e85c
MD5 832a00a1038c563d928482cc17909264
BLAKE2b-256 8fbb4bded02f20f1cc02516bd83fc93095c217936ca5691efeb708de3c3648bd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page