Skip to main content

Python interface to Stan, a package for Bayesian inference

Project description

Stan logo

pypi version travis-ci build status pypi download statistics

PyStan provides a Python interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.

For more information on Stan and its modeling language, see the Stan User’s Guide and Reference Manual at http://mc-stan.org/.

Similar projects

Installation

NumPy and Cython (version 0.19 or greater) are required. matplotlib is optional.

PyStan and the required packages may be installed from the Python Package Index using pip.

pip install pystan

Alternatively, if Cython (version 0.19 or greater) and NumPy are already available, PyStan may be installed from source with the following commands

git clone --recursive https://github.com/stan-dev/pystan.git
cd pystan
python setup.py install

If you encounter an ImportError after compiling from source, try changing out of the source directory before attempting import pystan. On Linux and OS X cd /tmp will work.

Example

import pystan
import numpy as np

schools_code = """
data {
    int<lower=0> J; // number of schools
    real y[J]; // estimated treatment effects
    real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
    real mu;
    real<lower=0> tau;
    real eta[J];
}
transformed parameters {
    real theta[J];
    for (j in 1:J)
        theta[j] <- mu + tau * eta[j];
}
model {
    eta ~ normal(0, 1);
    y ~ normal(theta, sigma);
}
"""

schools_dat = {'J': 8,
               'y': [28,  8, -3,  7, -1,  1, 18, 12],
               'sigma': [15, 10, 16, 11,  9, 11, 10, 18]}

fit = pystan.stan(model_code=schools_code, data=schools_dat,
                  iter=1000, chains=4)

print(fit)

eta = fit.extract(permuted=True)['eta']
np.mean(eta, axis=0)

# if matplotlib is installed (optional, not required), a visual summary and
# traceplot are available
fit.plot()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystan-2.8.0.1.tar.gz (15.1 MB view details)

Uploaded Source

Built Distributions

pystan-2.8.0.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (53.0 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pystan-2.8.0.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (53.0 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pystan-2.8.0.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (53.0 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pystan-2.8.0.1.tar.gz.

File metadata

  • Download URL: pystan-2.8.0.1.tar.gz
  • Upload date:
  • Size: 15.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pystan-2.8.0.1.tar.gz
Algorithm Hash digest
SHA256 0edb76cb74ac0480d92febb7ff8b533b7a163fdc47034f293c302c03c85b1661
MD5 8fee70d486ca8e60ef00408fcca389e6
BLAKE2b-256 16d6798ebc02f9ad9a61855116e54c65be8f18c94315b38be349082522dde3bb

See more details on using hashes here.

File details

Details for the file pystan-2.8.0.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.8.0.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 76de84ece62dd7bea49c01c2cdd3107a5835eec728ea345c7ededd70e51ce46d
MD5 65aa365e35487a36f353d957bf69fae0
BLAKE2b-256 86f98e8dff7cb66085f3d12ab897edf9e9a542f040d9fbe33e93359e6959971a

See more details on using hashes here.

File details

Details for the file pystan-2.8.0.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.8.0.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 4e67e31cb23292184a6204f959c9e46c077d9ab5c1f7502eacd131a1445e5bcb
MD5 452105c0f13f54779c8614cead8a0612
BLAKE2b-256 d812b2e4c622785ca92c0b8344047f92ad27b413f8336b6b8e49372e59f0d11c

See more details on using hashes here.

File details

Details for the file pystan-2.8.0.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.8.0.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9611fe2df756b15d6ba311135333be039c06cf9ec13ea363a1e7cc0fff56e465
MD5 a1d34cf78bc767ccbd544ae0d421a099
BLAKE2b-256 aeca3413a4a340cd9a18fd410c8593d434352d1c3f55c45f838bd861ad13220e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page