Skip to main content

Python interface to Stan, a package for Bayesian inference

Project description

Stan logo

pypi version travis-ci build status appveyor-ci build status pypi download statistics

PyStan provides a Python interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.

For more information on Stan and its modeling language, see the Stan User’s Guide and Reference Manual at http://mc-stan.org/.

Similar projects

Installation

NumPy and Cython (version 0.19 or greater) are required. matplotlib is optional.

PyStan and the required packages may be installed from the Python Package Index using pip.

pip install pystan

Alternatively, if Cython (version 0.19 or greater) and NumPy are already available, PyStan may be installed from source with the following commands

git clone --recursive https://github.com/stan-dev/pystan.git
cd pystan
python setup.py install

If you encounter an ImportError after compiling from source, try changing out of the source directory before attempting import pystan. On Linux and OS X cd /tmp will work.

Example

import pystan
import numpy as np

schools_code = """
data {
    int<lower=0> J; // number of schools
    real y[J]; // estimated treatment effects
    real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
    real mu;
    real<lower=0> tau;
    real eta[J];
}
transformed parameters {
    real theta[J];
    for (j in 1:J)
        theta[j] <- mu + tau * eta[j];
}
model {
    eta ~ normal(0, 1);
    y ~ normal(theta, sigma);
}
"""

schools_dat = {'J': 8,
               'y': [28,  8, -3,  7, -1,  1, 18, 12],
               'sigma': [15, 10, 16, 11,  9, 11, 10, 18]}

fit = pystan.stan(model_code=schools_code, data=schools_dat,
                  iter=1000, chains=4)

print(fit)

eta = fit.extract(permuted=True)['eta']
np.mean(eta, axis=0)

# if matplotlib is installed (optional, not required), a visual summary and
# traceplot are available
fit.plot()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystan-2.9.0.0.tar.gz (14.9 MB view details)

Uploaded Source

Built Distributions

pystan-2.9.0.0-cp35-none-win_amd64.whl (38.2 MB view details)

Uploaded CPython 3.5 Windows x86-64

pystan-2.9.0.0-cp35-none-win32.whl (38.1 MB view details)

Uploaded CPython 3.5 Windows x86

pystan-2.9.0.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (55.0 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pystan-2.9.0.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (55.0 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pystan-2.9.0.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (55.0 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pystan-2.9.0.0.tar.gz.

File metadata

  • Download URL: pystan-2.9.0.0.tar.gz
  • Upload date:
  • Size: 14.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pystan-2.9.0.0.tar.gz
Algorithm Hash digest
SHA256 a5ed9a570a6a5db7fa760e71a9d51f0fcd854e13c097fff9aa371a149dc9cc7f
MD5 6e77de801bd6f5e38cd64a77312f347d
BLAKE2b-256 912359b60946f55debc5bc834e3fdef48d0cc8945460291bf9dab4e24161a8d3

See more details on using hashes here.

Provenance

File details

Details for the file pystan-2.9.0.0-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for pystan-2.9.0.0-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 25808fdba5c5ec92437ee636f67b98e8a02f11a0d2351c1adb31825605e7ff28
MD5 3d1d002b3d24287cc136a29766c44d4e
BLAKE2b-256 3a189843d751b51481831b3cecf81f5042516b049a1c50f1c4117865bf8dee86

See more details on using hashes here.

Provenance

File details

Details for the file pystan-2.9.0.0-cp35-none-win32.whl.

File metadata

File hashes

Hashes for pystan-2.9.0.0-cp35-none-win32.whl
Algorithm Hash digest
SHA256 50834b1f9f2b5fad15b23c0f3060ddaa13c3fea0a816a990362d8576ebf00cca
MD5 fba399abbf6d14c9a658ce862def3dd4
BLAKE2b-256 67020a47d0e6161f3f876b9ef150575c13bba0080a3faffe68011c586b2dc82c

See more details on using hashes here.

Provenance

File details

Details for the file pystan-2.9.0.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.9.0.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a120f11e672c66a63d33a0930ef415225350e9f5d211abb7d0e104cda891b1f0
MD5 f75c69c1d3d478e7c2c58819e2147752
BLAKE2b-256 9979879e6f4d627ecdd1333086c79ed411c16f63624cfc80d397f7d008ffea43

See more details on using hashes here.

Provenance

File details

Details for the file pystan-2.9.0.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.9.0.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a89ae5576e11fb4099f5e10c00b26d76f06d165155f6471e24c51c246c1a3e14
MD5 66defc84b320f172a29d2b1e0589713f
BLAKE2b-256 06da735ddfb7680be5fd6d55c6bc12fc2a5eb1c391d71cfdf1b0d01f21da7155

See more details on using hashes here.

Provenance

File details

Details for the file pystan-2.9.0.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pystan-2.9.0.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b010048d8db845755c30c539959a8cebdfb9759f6db3009d61fabc8f29b5bd31
MD5 2360dc080b2002579b54529bad76ea36
BLAKE2b-256 35cb77104bcc7ed6a1b5ea7150f7f7cdd273fdc7d23512d1928b400bf7dc8efc

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page