Skip to main content

Python interface to Stan, a package for Bayesian inference

Project description

NOTE: This documentation describes a BETA release of PyStan 3.

PyStan is a Python interface to Stan, a package for Bayesian inference.

Stan® is a state-of-the-art platform for statistical modeling and high-performance statistical computation. Thousands of users rely on Stan for statistical modeling, data analysis, and prediction in the social, biological, and physical sciences, engineering, and business.

Notable features of PyStan include:

  • Automatic caching of compiled Stan models

  • Automatic caching of samples from Stan models

  • An interface similar to that of RStan

  • Open source software: ISC License

Getting started

NOTE: BETA versions of PyStan 3 must be installed with ``pip install –pre pystan``.

Install PyStan with pip install pystan. (PyStan requires Python 3.7 or higher running on a Linux or macOS system.)

The following block of code shows how to use PyStan with a model which studied coaching effects across eight schools (see Section 5.5 of Gelman et al (2003)). This hierarchical model is often called the “eight schools” model.

import stan

schools_code = """
data {
  int<lower=0> J;         // number of schools
  real y[J];              // estimated treatment effects
  real<lower=0> sigma[J]; // standard error of effect estimates
}
parameters {
  real mu;                // population treatment effect
  real<lower=0> tau;      // standard deviation in treatment effects
  vector[J] eta;          // unscaled deviation from mu by school
}
transformed parameters {
  vector[J] theta = mu + tau * eta;        // school treatment effects
}
model {
  target += normal_lpdf(eta | 0, 1);       // prior log-density
  target += normal_lpdf(y | theta, sigma); // log-likelihood
}
"""

schools_data = {"J": 8,
                "y": [28,  8, -3,  7, -1,  1, 18, 12],
                "sigma": [15, 10, 16, 11,  9, 11, 10, 18]}

posterior = stan.build(schools_code, data=schools_data)
fit = posterior.sample(num_chains=4, num_samples=1000)
eta = fit["eta"]  # array with shape (8, 4000)
df = fit.to_frame()  # pandas `DataFrame`

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystan-3.0.0b1.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

pystan-3.0.0b1-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file pystan-3.0.0b1.tar.gz.

File metadata

  • Download URL: pystan-3.0.0b1.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.2

File hashes

Hashes for pystan-3.0.0b1.tar.gz
Algorithm Hash digest
SHA256 61bf0f3548f6c11a81c10e754b7d3b2807828aa717357348a66be5b248efde47
MD5 f0388455815a4d07f16e402ef8f37893
BLAKE2b-256 e2bb999e96b066c05dc55c73e28afaba099ea4bb61d19c23d28735db251d8dbb

See more details on using hashes here.

File details

Details for the file pystan-3.0.0b1-py3-none-any.whl.

File metadata

  • Download URL: pystan-3.0.0b1-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.2

File hashes

Hashes for pystan-3.0.0b1-py3-none-any.whl
Algorithm Hash digest
SHA256 8483698558e778969bad586c34876d04b37d15e16243bc835b5b11deeffd1892
MD5 3f5d9e8dd7a783ebf0833cf7b2524686
BLAKE2b-256 cc91ec7d1ab571b18445c58aff7a364c401f5b17831fe5b4d1652e12f6061680

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page