Skip to main content

Python interface to Stan, a package for Bayesian inference

Project description

PyStan is a Python interface to Stan, a package for Bayesian inference.

Stan® is a state-of-the-art platform for statistical modeling and high-performance statistical computation. Thousands of users rely on Stan for statistical modeling, data analysis, and prediction in the social, biological, and physical sciences, engineering, and business.

Notable features of PyStan include:

  • Automatic caching of compiled Stan models

  • Automatic caching of samples from Stan models

  • An interface similar to that of RStan

  • Open source software: ISC License

Getting started

Install PyStan with pip install pystan. PyStan runs on Linux and macOS. You will also need a C++ compiler such as gcc ≥9.0 or clang ≥10.0.

The following block of code shows how to use PyStan with a model which studied coaching effects across eight schools (see Section 5.5 of Gelman et al (2003)). This hierarchical model is often called the “eight schools” model.

import stan

schools_code = """
data {
  int<lower=0> J;         // number of schools
  real y[J];              // estimated treatment effects
  real<lower=0> sigma[J]; // standard error of effect estimates
}
parameters {
  real mu;                // population treatment effect
  real<lower=0> tau;      // standard deviation in treatment effects
  vector[J] eta;          // unscaled deviation from mu by school
}
transformed parameters {
  vector[J] theta = mu + tau * eta;        // school treatment effects
}
model {
  target += normal_lpdf(eta | 0, 1);       // prior log-density
  target += normal_lpdf(y | theta, sigma); // log-likelihood
}
"""

schools_data = {"J": 8,
                "y": [28,  8, -3,  7, -1,  1, 18, 12],
                "sigma": [15, 10, 16, 11,  9, 11, 10, 18]}

posterior = stan.build(schools_code, data=schools_data)
fit = posterior.sample(num_chains=4, num_samples=1000)
eta = fit["eta"]  # array with shape (8, 4000)
df = fit.to_frame()  # pandas `DataFrame`

Citation

We appreciate citations as they let us discover what people have been doing with the software. Citations also provide evidence of use which can help in obtaining grant funding.

To cite PyStan in publications use:

Riddell, A., Hartikainen, A., & Carter, M. (2021). PyStan (3.0.0). https://pypi.org/project/pystan

Or use the following BibTeX entry:

@misc{pystan,
  title = {pystan (3.0.0)},
  author = {Riddell, Allen and Hartikainen, Ari and Carter, Matthew},
  year = {2021},
  month = mar,
  howpublished = {PyPI}
}

Please also cite Stan.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystan-3.5.0.tar.gz (14.2 kB view details)

Uploaded Source

Built Distribution

pystan-3.5.0-py3-none-any.whl (13.8 kB view details)

Uploaded Python 3

File details

Details for the file pystan-3.5.0.tar.gz.

File metadata

  • Download URL: pystan-3.5.0.tar.gz
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.10.5 Linux/5.13.0-1031-azure

File hashes

Hashes for pystan-3.5.0.tar.gz
Algorithm Hash digest
SHA256 078571d071a5b7c0af59206d4994a0979f4ac4b61f4a720b640c44fe35514929
MD5 041aa418f1db55e4132bb883a9b041f1
BLAKE2b-256 40ec35c48a19cf1bea3ec9e932ec93439e1a370c85507925bd02e83f9bff01fe

See more details on using hashes here.

File details

Details for the file pystan-3.5.0-py3-none-any.whl.

File metadata

  • Download URL: pystan-3.5.0-py3-none-any.whl
  • Upload date:
  • Size: 13.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.10.5 Linux/5.13.0-1031-azure

File hashes

Hashes for pystan-3.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b4a879f95ff62fab465726163833dcf3f445258acb115103efb143920e66cd21
MD5 ef11c0ffcab0736260b9cc2416effc75
BLAKE2b-256 e921b20cd3ba84781acdfeb02cee472892740786fe26af7df0b20caaa3d89f43

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page