Skip to main content

Python interface to Stan, a package for Bayesian inference

Project description

PyStan is a Python interface to Stan, a package for Bayesian inference.

Stan® is a state-of-the-art platform for statistical modeling and high-performance statistical computation. Thousands of users rely on Stan for statistical modeling, data analysis, and prediction in the social, biological, and physical sciences, engineering, and business.

Notable features of PyStan include:

  • Automatic caching of compiled Stan models

  • Automatic caching of samples from Stan models

  • An interface similar to that of RStan

  • Open source software: ISC License

Getting started

Install PyStan with pip install pystan. PyStan runs on Linux and macOS. You will also need a C++ compiler such as gcc ≥9.0 or clang ≥10.0.

The following block of code shows how to use PyStan with a model which studied coaching effects across eight schools (see Section 5.5 of Gelman et al (2003)). This hierarchical model is often called the “eight schools” model.

import stan

schools_code = """
data {
  int<lower=0> J;         // number of schools
  array[J] real y;              // estimated treatment effects
  array[J] real<lower=0> sigma; // standard error of effect estimates
}
parameters {
  real mu;                // population treatment effect
  real<lower=0> tau;      // standard deviation in treatment effects
  vector[J] eta;          // unscaled deviation from mu by school
}
transformed parameters {
  vector[J] theta = mu + tau * eta;        // school treatment effects
}
model {
  target += normal_lpdf(eta | 0, 1);       // prior log-density
  target += normal_lpdf(y | theta, sigma); // log-likelihood
}
"""

schools_data = {"J": 8,
                "y": [28,  8, -3,  7, -1,  1, 18, 12],
                "sigma": [15, 10, 16, 11,  9, 11, 10, 18]}

posterior = stan.build(schools_code, data=schools_data)
fit = posterior.sample(num_chains=4, num_samples=1000)
eta = fit["eta"]  # array with shape (8, 4000)
df = fit.to_frame()  # pandas `DataFrame`

Citation

We appreciate citations as they let us discover what people have been doing with the software. Citations also provide evidence of use which can help in obtaining grant funding.

To cite PyStan in publications use:

Riddell, A., Hartikainen, A., & Carter, M. (2021). PyStan (3.0.0). https://pypi.org/project/pystan

Or use the following BibTeX entry:

@misc{pystan,
  title = {pystan (3.0.0)},
  author = {Riddell, Allen and Hartikainen, Ari and Carter, Matthew},
  year = {2021},
  month = mar,
  howpublished = {PyPI}
}

Please also cite Stan.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystan-3.9.0.tar.gz (13.8 kB view details)

Uploaded Source

Built Distribution

pystan-3.9.0-py3-none-any.whl (13.9 kB view details)

Uploaded Python 3

File details

Details for the file pystan-3.9.0.tar.gz.

File metadata

  • Download URL: pystan-3.9.0.tar.gz
  • Upload date:
  • Size: 13.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.7 Linux/6.2.0-1019-azure

File hashes

Hashes for pystan-3.9.0.tar.gz
Algorithm Hash digest
SHA256 07493f90537215b8de8577d8905cccbaa209835106437c5a0035d9dc89215417
MD5 76f1da76890c551406384eb395bbb229
BLAKE2b-256 332c4da7111fdc703bbd810caf766a8d9e2a83ad8192ccccb9d0f26a5570e418

See more details on using hashes here.

File details

Details for the file pystan-3.9.0-py3-none-any.whl.

File metadata

  • Download URL: pystan-3.9.0-py3-none-any.whl
  • Upload date:
  • Size: 13.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.7 Linux/6.2.0-1019-azure

File hashes

Hashes for pystan-3.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d4f312efaeb54be878bc3a1762c3ea166711e4dc671a58862ee9e282297f3df4
MD5 4b9de98d8421b39ea1b6e006480ee65b
BLAKE2b-256 36dce84dcee309f00384674bd4571085a1daada182552a0fbc83231672539b4b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page