Skip to main content

A Python 3 package of statistical analysis and distributions

Project description

PyStats

PyStats is a Python 3 library of statistical analysis and distribution functions with simple R-like syntax, scalar/list input/output with OpenMP parallelization.

Contents

Distributions

Functions to compute the cdf, pdf, quantile, as well as random sampling methods, are available for the following distributions:

  • Bernoulli
  • Beta
  • Binomial
  • Cauchy
  • Chi-squared
  • Exponential
  • F
  • Gamma
  • Inverse-Gamma
  • Laplace
  • Logistic
  • Log-Normal
  • Normal (Gaussian)
  • Poisson
  • Student's t
  • Uniform
  • Weibull

Installation

You can use pip to install this library:

pip3 install pystats

Alternatively, you can also clone this repository and install the plugin manually using pip:

$ git clone git@github.com:marcizhu/PyStats.git
$ pip3 install ./PyStats

After that, you can just import pystats (or do from pystats import * if you don't want to type pystats. before all functions) and you're ready to go.

Documentation

Full documentation is available online:

Documentation Status

A PDF version of the documentation is available here.

Syntax and Examples

Functions are called using an R-like syntax. Some general rules:

  • Density functions: pystats.d*. For example, the Normal (Gaussian) density is called using
pystats.dnorm(<value>, <mean>, <standard deviation>)
  • Cumulative distribution functions: pystats.p*. For example, the Gamma CDF is called using
pystats.pgamma(<value>, <shape parameter>, <scale parameter>)
  • Quantile functions: pystats.q*. For example, the Beta quantile is called using
pystats.qbeta(<value>, <a parameter>, <b parameter>)
  • Random sampling: pystats.r*. For example, to generate a single draw from the Logistic distribution:
pystats.rlogis(<location parameter>, <scale parameter>)

The library also supports lists as input/output:

  • The pdf, cdf and quantile functions can take list arguments. For example:
norm_pdf_vals = pystats.dnorm([x / 10 for x in range(-10, 10, 1)], 1.0, 2.0)
  • The randomization functions (r*) can output lists of arbitrary size. For example, the following code will generate a 100-item list of iid draws from a Gamma(3,2) distribution:
gamma_rvs = pystats.rgamma(100, 3.0, 2.0)

Additionally, most parameters have defaults to most common values and named parameters are also supported. For example, to generate a single draw from a Normal(0, 2) the following can be used:

norm_draw = pystats.rnorm(sd=2.0)

Examples

More examples with code:

# Evaluate the normal PDF at x = 1, mu = 0, sigma = 1
dval_1 = pystats.dnorm(1.0, 0.0, 1.0)
 
# Evaluate the normal PDF at x = 1, mu = 0, sigma = 1, and return the log value
dval_2 = pystats.dnorm(1.0, 0.0, 1.0, True)
 
# Same as above, but using default values and named parameters
dval_3 = pystats.dnorm(1.0, log=True)

# Evaluate the normal CDF at x = 1, mu = 0, sigma = 1
pval = pystats.pnorm(1.0, 0.0, 1.0)
 
# Evaluate the Laplacian quantile at q = 0.1, mu = 0, sigma = 1
qval = pystats.qlaplace(0.1, 0.0, 1.0)

# Draw from a t-distribution with dof = 30
rval = pystats.rt(dof=30)

# List output
beta_rvs = pystats.rbeta(100, 3.0, 2.0)

# List input
beta_cdf_vals = pystats.pbeta(beta_rvs, 3.0, 2.0)

For more information on default values, parameter names and other examples, check the documentation.

Credits

This library uses kthohr/stats for the statistical distribution functions, kthohr/gcem (a dependency of the previous library) and pybind/pybind11 to generate the binding code.

License

Copyright (c) Marc Izquierdo 2021-2024
This library is licensed under the MIT License. See LICENSE for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystats-0.1.2.tar.gz (5.3 kB view details)

Uploaded Source

Built Distributions

PyStats-0.1.2-pp310-pypy310_pp73-win_amd64.whl (133.9 kB view details)

Uploaded PyPy Windows x86-64

PyStats-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (333.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (347.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

PyStats-0.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (159.4 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

PyStats-0.1.2-pp39-pypy39_pp73-win_amd64.whl (133.9 kB view details)

Uploaded PyPy Windows x86-64

PyStats-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (333.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (347.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

PyStats-0.1.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (159.4 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

PyStats-0.1.2-pp38-pypy38_pp73-win_amd64.whl (133.8 kB view details)

Uploaded PyPy Windows x86-64

PyStats-0.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (333.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (347.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

PyStats-0.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (165.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

PyStats-0.1.2-pp37-pypy37_pp73-win_amd64.whl (133.8 kB view details)

Uploaded PyPy Windows x86-64

PyStats-0.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (333.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (347.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

PyStats-0.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (165.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

PyStats-0.1.2-cp313-cp313-win_amd64.whl (134.5 kB view details)

Uploaded CPython 3.13 Windows x86-64

PyStats-0.1.2-cp313-cp313-win32.whl (116.7 kB view details)

Uploaded CPython 3.13 Windows x86

PyStats-0.1.2-cp313-cp313-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

PyStats-0.1.2-cp313-cp313-musllinux_1_2_i686.whl (1.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

PyStats-0.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (335.6 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (348.8 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

PyStats-0.1.2-cp313-cp313-macosx_10_13_x86_64.whl (162.3 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

PyStats-0.1.2-cp312-cp312-win_amd64.whl (134.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

PyStats-0.1.2-cp312-cp312-win32.whl (116.7 kB view details)

Uploaded CPython 3.12 Windows x86

PyStats-0.1.2-cp312-cp312-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

PyStats-0.1.2-cp312-cp312-musllinux_1_2_i686.whl (1.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

PyStats-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (335.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (348.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

PyStats-0.1.2-cp312-cp312-macosx_10_13_x86_64.whl (162.3 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

PyStats-0.1.2-cp311-cp311-win_amd64.whl (133.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

PyStats-0.1.2-cp311-cp311-win32.whl (115.9 kB view details)

Uploaded CPython 3.11 Windows x86

PyStats-0.1.2-cp311-cp311-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

PyStats-0.1.2-cp311-cp311-musllinux_1_2_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

PyStats-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (333.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (348.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

PyStats-0.1.2-cp311-cp311-macosx_10_9_x86_64.whl (165.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

PyStats-0.1.2-cp310-cp310-win_amd64.whl (133.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

PyStats-0.1.2-cp310-cp310-win32.whl (116.0 kB view details)

Uploaded CPython 3.10 Windows x86

PyStats-0.1.2-cp310-cp310-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

PyStats-0.1.2-cp310-cp310-musllinux_1_2_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

PyStats-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (333.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (348.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

PyStats-0.1.2-cp310-cp310-macosx_10_9_x86_64.whl (165.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

PyStats-0.1.2-cp39-cp39-win_amd64.whl (133.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyStats-0.1.2-cp39-cp39-win32.whl (115.9 kB view details)

Uploaded CPython 3.9 Windows x86

PyStats-0.1.2-cp39-cp39-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

PyStats-0.1.2-cp39-cp39-musllinux_1_2_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

PyStats-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (334.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (349.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

PyStats-0.1.2-cp39-cp39-macosx_10_9_x86_64.whl (165.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyStats-0.1.2-cp38-cp38-win_amd64.whl (133.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyStats-0.1.2-cp38-cp38-win32.whl (115.9 kB view details)

Uploaded CPython 3.8 Windows x86

PyStats-0.1.2-cp38-cp38-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

PyStats-0.1.2-cp38-cp38-musllinux_1_2_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

PyStats-0.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (333.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (348.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

PyStats-0.1.2-cp38-cp38-macosx_10_9_x86_64.whl (165.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyStats-0.1.2-cp37-cp37m-win_amd64.whl (132.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyStats-0.1.2-cp37-cp37m-win32.whl (116.5 kB view details)

Uploaded CPython 3.7m Windows x86

PyStats-0.1.2-cp37-cp37m-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

PyStats-0.1.2-cp37-cp37m-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

PyStats-0.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (362.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (372.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

PyStats-0.1.2-cp37-cp37m-macosx_10_9_x86_64.whl (160.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyStats-0.1.2-cp36-cp36m-win_amd64.whl (132.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyStats-0.1.2-cp36-cp36m-win32.whl (116.5 kB view details)

Uploaded CPython 3.6m Windows x86

PyStats-0.1.2-cp36-cp36m-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ x86-64

PyStats-0.1.2-cp36-cp36m-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ i686

PyStats-0.1.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (362.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

PyStats-0.1.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (372.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

PyStats-0.1.2-cp36-cp36m-macosx_10_9_x86_64.whl (160.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pystats-0.1.2.tar.gz.

File metadata

  • Download URL: pystats-0.1.2.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pystats-0.1.2.tar.gz
Algorithm Hash digest
SHA256 4b64e0c321a36736fab9af50368ca5b941fb9061e90728438f4d2aa844f3659c
MD5 b5a2753d1d0a37764b2b9ca0cbaa8451
BLAKE2b-256 61b98ffff1e170e7480816aeea67ec2185db81c3d130988e4710dcd084ce5497

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 522df3b74d1bf2ead350ecd243e2bbd2e2065a451f1eb161be041245c5f9014e
MD5 368a40fecf6e9799ce6b97fedbe9dd97
BLAKE2b-256 d05688477f14042c2f9d83bb878b2ec0f5bbaaafbb2110438dea4676e5457705

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 360fc38c6197e3c4776df116a7653e20ccbda3ec57374d7f645694914040b1dd
MD5 0c2ec1b2a39dc08bbb5b64ad42cff390
BLAKE2b-256 b9e3452808ab1a87cb58cefb0ba93c492eec7a76ae4ddeb59de400626679efce

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 23f43533962e7b703341322eec2d4c7a1a092b6329b763e45d307125a4fa57fa
MD5 22d186d9b0b80c80a88764d515170515
BLAKE2b-256 2ca5f0d802eb91f38115436c3e62be610aef150898ecb3719356ee739eac9fc1

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f8f2cd1ebcc276df4af7610eb530b347b4e3eb4477ea1b626f41bb411865cfef
MD5 79b340bac791cd771abd2ad4c974b560
BLAKE2b-256 61a7e44598223347aa6c3fe58e935bdb82b2d2ede87374f882bf772c69fdc78b

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 86f43bb5d6fb3e9fe96631e9d9bc9475b7e1ec39fd60bb5b6b8963bd1ef6ee85
MD5 34216d2780f2381afc5f78cf86ae3938
BLAKE2b-256 4b982cb7782ae4da81fe9893b2342250a44c7cb4494ca61e1902574ab88c54aa

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 151c915eec8c62f80cacaef536ca3b100c650c902b10eee7e70997f56823362d
MD5 b264b390831b89ee685ba927764118a9
BLAKE2b-256 6af4646cba9faf2ee445ce87498a686e37ddb93bf9fe1832afa293036bab7957

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2cf518acf9c3577ae7946f0be2b2e43cecb07e68151b126a84b662a8920dad4b
MD5 40e78c127693507b386a4ec3ba1e003b
BLAKE2b-256 c7de63b82ce20f587cddd5ce56f602c137a6b31a23d7bc6906e9c9d299a00a16

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5b63eaddd2fb03a9eaad5414c39676ea8725c5ac74aff7a60e5f00d8659204f3
MD5 471573663acc719852d84e9506a333b8
BLAKE2b-256 72d434d456097e42da97558250cbe986c848cf6b54f514a407c1cd18daf395a7

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2c60fc9917744005c4cec6a2c1404d2d23e3cde7e7c63efd353ba8879dd350e1
MD5 80fd4512f7775352ac263638acf86b03
BLAKE2b-256 5a74cfe8b1b4352d00b16855874f9862cd5356bb4e662b4ab4c1341cbf3ab66e

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 feb26887147bf9cb1ebafe2bd809ce6e4ef1e9f97d3050fca4e2752d88f14f40
MD5 4b4ff8a6970d0d43209864755e5d138e
BLAKE2b-256 6defdb7313a7e62b60cf1f203498b4ffc52e111c0ea46cf3ac0a67a687fd83ba

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 38ce629aa2ff709db902afe764dcf84e416f44be283af7743325a3c2a96de779
MD5 b2d5151130a080fb0bc3848ccc8efddf
BLAKE2b-256 130be721d7dce1c1cd5c85e44018f2f7c167ebc2cedb77af1bdd1b488706880c

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 71b098559afea5dac1a76a8d7619ca19a41f343e6b69da2d37bde964fc47f438
MD5 a1f2dfd13a5eed5f13454ff889b6421b
BLAKE2b-256 306046e9279f66df48ccd8e787ce2b3184a5c7708fbd3083b7d2891f7f67f3a7

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 25d13d9db6610b6c818fa64e9cd58dd61b5b8639706d2c59e06799cf99d564b0
MD5 0482c9fd827475c9f3b48e3c10c75089
BLAKE2b-256 17ce56868cd0cab14c3312f7aa3beed6bcbdaf7d7d88d1252b596c25e57b7550

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d3917a597d25a61d18e897a8cbce71acc3ca4b2232d54b839d5a41ac73471a55
MD5 0132b0f8ebd6f74c1e8d9285a9c1711d
BLAKE2b-256 a661163c4690d4ea7f69bf7e1302de09c5cad11c153338423e1234581f294acb

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 37ef442ed88e835034602397cb2bac5bed7163e46bb22f49418c3b7feca75949
MD5 2b1b4cc44b879078424eacc172b65264
BLAKE2b-256 4385ddd3b1b7ac802e2d4f187ffdcef2d09676c2d70310b73ede94346b934a1d

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b656a012d649390d5f12e3ae3478bafe10cd6a2dfe74e5f4d3d291468d1e4bbc
MD5 46caa9961a89fb7876c54544d2ceae6f
BLAKE2b-256 00f4220535afa82b6d275644af454bccc9ccf69e1b56296c33c731fed13d83fe

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 134.5 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 2582406b5ce1f989d0cd2b71fb16461f9241b7cdc215728818e09c6caf9eec6b
MD5 bfc994a20e80f57ebaea89170aab227e
BLAKE2b-256 799639d780145171cfa32f8eb2892dd6a3f7d1678b85b655dbaa41235fc45782

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp313-cp313-win32.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp313-cp313-win32.whl
  • Upload date:
  • Size: 116.7 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 6f5f567c8f1832a104c7a23f3336780a6ad400510b06495101d4964a1120a768
MD5 8d4b5738a10e7e2938d908d72f6a7a0e
BLAKE2b-256 15248121faf62e56646fdd24235e13a692893d19e1a4e0daaa4865d3555e49b6

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 71f397914c9a079b511fa2404abe21bd5c3f6be0be83167550713927ecf42ba9
MD5 ed53a3aa3b2c1beb264a29b8329f6b81
BLAKE2b-256 7be72d0759313248f4e5ca906fee56b88e252ea641d10a847a6fc0930e55c1d9

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 bf6e770a9196f135371105abd1bccc1054039b14c1faf9a71a4d2f5ebe58d3bc
MD5 759cce42528c01f3386829bb08010426
BLAKE2b-256 65003f8642c7664450f1be5f3db49e9f6cd701cd8171fe377cdb0218ad288902

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19eec78b5fb5cda9bc6a81a4516944a07db4449a53b354a7459c38dc180bafef
MD5 9c9d29febdfe2b5e0657490a00ca541a
BLAKE2b-256 3d2052737a231fd14ce7ac989beb41a9fe7d7c3bdec0bed478d185c6415349f1

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 26bab7b34debbffc31334fe32bd428242f8699db58c1d8eda27573e86718a697
MD5 002e5ca91fe15f7a62db09c243fac3b0
BLAKE2b-256 511d5cf4f78a1f982e0d6699305dc24811e79aa76a6016fe68ec5bb1f91066cc

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1ff41f844da91c7520d9bde2a3a12ecbecc4cc6f4fe865df1af5b86e22527e9d
MD5 96b6dfcfcca2118e39fc28534bad2dfc
BLAKE2b-256 612685c1b75ead3231571e13ea170f43036e876f634a3001580d38db85f4955f

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 134.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 33fd4ce4fc4d695e9cc3b1362624fb50a5d8c6250af0467e4411fc6f330442b8
MD5 838e312084a27bb4524afffb2959b826
BLAKE2b-256 bf17d90babc2ba12b8bef471ea7c7ff5fd3dd8574c60a6e435c0c3e068b04192

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 116.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 72417fd33969c94392354339fd5a1121a9113daf1f9b87fb8d5656ef6eab65e4
MD5 3ac2f954dfc6b7e7222b8c8a82334b83
BLAKE2b-256 9eb72ea02ce28100e1cfd83d97a3689896aeff13ba02cff0f896f27725e7ab87

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a6f3b89e2eeaa0dc881666150533916b7bdb2784edf6c4441233766edf305178
MD5 e815e08b82eed2e6388ccd5cc7050502
BLAKE2b-256 95b2aa30588c748ff51330d01ea9e5569df2cd1ae916602b733c2dc52b171f64

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5ac37bb7482e4d2afab068a8ea6a188103ec236290bc01b8e4e7b126d4b29a7b
MD5 00c5c1f400a53c0c4fd826db1a39bf45
BLAKE2b-256 6699e1c752cb1812fd1ebe9b6c0e850a20d1a0487e7981953b2031b8f3d41dff

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9776fb75a2302b07c4cd83df0c7be7d93b23eedf4b2356a066c9b51c31fa0d8
MD5 d66ed1a71bea40891b035a550e1dedca
BLAKE2b-256 5d5d12c4b1389334a487bc599d03aa3b046c79fa294bb0390cf76387b15f9193

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d84f60a4358fea5a8376ca4fe560268fc7fef08a45bf228ff2587c15cdc0db18
MD5 6533035291e9fecf692caa237bd3c132
BLAKE2b-256 62a5707da5225fa4bd0b0f43e9635f4f2088c606285f22299521784dfb218535

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 211d8210d91185d18416f62f79a45ba660ccd06743efe6c73e01b1ad2256f555
MD5 978912d78367345a927318dfad7133d7
BLAKE2b-256 7e03380a2ea86be6b274a3e8b2c04495591b7321040be55ac4ec8fd5931f60fa

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 133.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 56c26f108b36319b09e06b8d4dae66b9f2c797dfb2ff34557cc9123b969a5ed4
MD5 d8a769817616a63f1162437d549bd754
BLAKE2b-256 6cbcca1801721a51bbc4d57d4588d9c20afd2dc30d550dec04ed639c3f56555c

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 115.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 90c78d4f5aa3a3926e6fa04542aca340267ee37ca627ab433a037642da20b01b
MD5 cab705051dc188b00b7144eb494407bc
BLAKE2b-256 5d082b19e8e683d5faffe3626d9674f8902790a999bb86b9bee255619b8490fe

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bc111a783f0b573ff6568beb022033425e94da56f1b3029289bc0af8f87c300a
MD5 c64602bbe8b0e514efd63a36d0e8d689
BLAKE2b-256 dee7df93a68043f4f13f449565ec478709abb53fde7a604292a21fc6a6d3a046

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 8f8f9d913c3fa1b17a2d894a281b7af9ed95ff50820e000b0e704ba2440b0075
MD5 7764df5920a8a601491b43f03999723f
BLAKE2b-256 1236870bf7b9479a0f24be683db89273c98f858a5317e731ba70fc25d321ebef

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87e43a0dfc483ffddca1d0eef637762506ddf6f83ad4692b2d57b01c8f72f965
MD5 2b027626001b11a6170707d42c7ee7fd
BLAKE2b-256 8d52f4619ed8a160abe328ebdfa4511ea5e783bf88569489e24d60ed768507f0

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 033f012cd7f002af4d2b00f065dc0872a89909207e889d0fd9fa93a26ad2dad0
MD5 f39de7eea14580084557769092da1313
BLAKE2b-256 18146c91aaaf2332179a473ae102cef5d54f83050b39a7386891c21c3093dcb1

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d60a09d738cbeebe10c8673faaa3f703f46cb5a97dd89f7ad60263e6f4ece807
MD5 b4914f8aab1aca1f4d3914483d44b165
BLAKE2b-256 e11cce8a689e1ba0cc2501db19c598b0078b0f3280beac5637abd6ff4f5ab731

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 133.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 723754ba54fa994f4fab2c38996582d506ec8ef6ac95df1bc944fe670351acf9
MD5 fa6aadf367ab2fa6ea13f0819bbe5634
BLAKE2b-256 9d16a6c92d73a88e23369fe4bd90e988bba1ddedae9d5b6fb5feeeb0f7e943f6

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 116.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 61a19bc2f6590def311296d7039046ebebf92cc415795c6e9fd95aeeb19e1c07
MD5 dbc058919dc238614f5fb88dc071e28f
BLAKE2b-256 d525ec503056e160960c47afb34d1cb1343634680c9462b66505f43e66465b38

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 45a177c204452075fdee5c0096a606fa32aa1dac191284aff20cf62f290f05cc
MD5 b9bd665ed84ffa4b2cea5b078a2eef23
BLAKE2b-256 031b2c6bae753519b4bf868885d69aa2ba4a4cc9105c8bce3e7f75dfbabb8662

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 2029c781abd89fd125cccde80f4aa6b7812c8b38e8aa7174cf60b820a42bc9bc
MD5 04a7d75559920fc07df4bb731e8a3820
BLAKE2b-256 48eca0f1e55aba5546438f63ac765b4eb506f8de42a7ee2bbb1b14a03e712a92

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c547047d272e4711eebb3c63e02b2c91155f7abe61aee6bbd5094eab64caab0e
MD5 8ff928cc3226814703cf5f7dabcb7530
BLAKE2b-256 49008b45597311f11b340cb9ecb5468d67cad7ff023271b311fb8aade171221c

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a2c90de95cdb9044cbed05e5fbeb1a910d0cf1f94b9c284f59821c21b0089e14
MD5 66decfeff237f524a0c21202178b3d6b
BLAKE2b-256 d567bf3ef61ebc7e40252cc13c775431e90bb16860246734cbecaac71b9512c5

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 76012e26304a8f0af1f13e5130481506027266e92a8b63558e2725548f1c3a45
MD5 3320f0bdc8f414dd07dbf12822649452
BLAKE2b-256 46078f5ea5562a9aebeb689a5d3732326629917c42a43b01085c7077c895a2db

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 133.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a83a963948f06e08d8a803e2cadeaa5a97f752f340832285f921f6a81ca4d421
MD5 95646e23e4aae14ea1d39c9a23aedc03
BLAKE2b-256 c25216708bd965d58c0f9b9d9768c76cf4bccc3a415202fac55912cf4f20de4e

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 115.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 92bb5e95299220830d17b2de907e81def1abb137b4b2e8fa8d4e7ad320e3252b
MD5 1128934e135f8a77651ed025963a04f9
BLAKE2b-256 06deaadf9bc2199aa176ccb6008836e95bb2e2e6ee02ef8cbe78d303801ad8c9

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9cb0ce90d44e7c88378890813ef3909f5218b1be7de62aadf848b9b34a959c19
MD5 ebbcaeb7770318c5e515377294e15324
BLAKE2b-256 1bb2907d1f1773bf54834a8d124d818be41b8fd0d28a96d1e1bef2a7275c2e05

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 624a7267a0a93d366acefdc5d01e31dbe53e57fab5316bc3da85604ae385e741
MD5 f5dcfb55b8976c264ecd64a48db8ba87
BLAKE2b-256 ebbb654733050d908cce94de8ceea7a37d0e54cacf8e5bd81216c95aa00efe14

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98698aea21a17833e168c6cafb3e706479aca51da22a243752417cd44619ca3b
MD5 93fdf79574c56479b247ecbd48073249
BLAKE2b-256 14db4d95c390fcd3216a10b1b1b1fec8aa34a667a5f2138abb4589d5f66415df

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 56e5cce988863da0bafbcff0b8aad282bdc890a25a80daa4de349845e0149fbf
MD5 6ef92b10a2f7d22a7806b1bb0613a164
BLAKE2b-256 5d6a0438d3a2f89ebc450f24ef138268f866bbe117da7f57ed6f900f941e5a73

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a46800421d1b4ae36efe004c8a2a4d1d0714c9e22128b241aa3bd0a9db13100f
MD5 66c43eacbf740f28b81cb5ce1070a16f
BLAKE2b-256 ecdacb482c8722a1b1d6e1fe54d5bfe185ba423e278ed96a8c09f94ccc9cf3b1

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 133.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1a2735c59222f70be1056989d42d6dcea686929769954a2941730c9cadeac081
MD5 a00c34e124ca011391394516629a6a73
BLAKE2b-256 65409fee1da0742cef471d5f56711ee34243859bae17e4637d809b58168a6a62

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 115.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2e1d9c46642d5a24f92dcb5442a0762313d113248d0982e3da9883cfc9229959
MD5 9fabbb242416dedfc9122d0b3ca8882a
BLAKE2b-256 e80e3fa1a87b66d6dfa267cef5175da280ccd8f7cdec0efe8d381c554a03eeac

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 dbf45e16a53107c81ca9274fbfd44c2aa00a0b380256b0c6fd068f7e98514273
MD5 a68536f4ce5b4aebce3c6f0f0af8379b
BLAKE2b-256 5cade9fa96e5a91fe4c11c81b1cef9b2bba3ca4ad403e60db0627af06ee9bf4c

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 258b47542ddd5394bdb739ffe72156fb408105dc68d17f18b7eeaa9877767b78
MD5 d3e510a2ff29fcd3c7035fc08dd26ab7
BLAKE2b-256 b45d631c8bb135d6b250a0d8282e155bdbd5ae85bc4696a3335f8c8226580529

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d50df0cd7648e3e6eac06966e19975c3ed7154cf1ae3e534917bc0e232626532
MD5 60d45fabcbb7252c3ccc8a7f471cc145
BLAKE2b-256 0a303cd9fc181f9f281d116d7ddc51f52abf0ae84b258b2ac75a52296ff5f6a7

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 feae6fbd64b19ae74d0b0192666a962a0224d6cacdc39a8b0ace4347d74cc7ad
MD5 05d89b8e68e9ff1f7267755e122ca503
BLAKE2b-256 a12eca6eb125fd34d0a5d2e32867b25e562263b56dc544984d7e2df622e30619

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fd7f59ef811aea7ff0f9a9135a3229756f787f91893df7eef2a658efdd0a043e
MD5 4a7ffc4c4308e998ed296863265295b1
BLAKE2b-256 2eb455568ba6a4953b78a714686ba3f09e7ee3a081d9e22b36aad233701078a1

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 132.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bcfb8c0a7b7b32e574e90ee101bc0ce8271aef579f635659a3196f416ce75daa
MD5 9343e7b77d2f7d6761d79afa6c42fb9a
BLAKE2b-256 c14143c24083eb9658918ba7fc9ec3bb4fe44f257c21c14edefedfc4530c95a0

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 116.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8bc3632ce883e43e16af35f1624fbf44d8efde4d355162942f970643aed3b008
MD5 bdfc7da0d092c1f2f3ef53812e0fc27e
BLAKE2b-256 e71b8d952f44cf4e575446785d407c06f6f7e49d688136bf8bd4a8b11cc7ee4a

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 84a7b3469d5814576abcd7563d52cc8d1cb39cf5236059d0040bee3a74ce7c20
MD5 8970bcfa21557e9d4499c74706beffdf
BLAKE2b-256 34a0ea302ac75ad20fbc0109025e8cea2635c97324b218915fb679aacc0336d3

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 49ab89eea43ecf1c2f5ae1611460f58f39bb0da735035193fb32a92d95c48b84
MD5 8850a49d862182425b04a4be9ef40caf
BLAKE2b-256 eddd797b050924597e6261c13ef5ffce8f7a824e67933d5ea68548916e5e8a25

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4d17d5a9712079fb0ef9d95bda66db39f2bcadd78a8a3b665bc20bf258d7032
MD5 3377ef4bc00fd398959bb23fc0c5157b
BLAKE2b-256 5823a338c08b420d98a60bdff2434ac8482e61b2609b032a0b964db9a905ad8a

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba2a504175c90212f4ee5507b9671c342cf6ff25357a3a34f763f5b2d50ca49b
MD5 a293b32a4e0a28b05eb059ea60872052
BLAKE2b-256 84033d49dbbcff80b9760e7c3be84115bac669cb924cb69812551069986d1b7e

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b64582c7149b88f9a205924dcf55eb77518e213633c7dfcb0c94c2175b25fffb
MD5 072020a426e413345a9cc947896ffe8f
BLAKE2b-256 c6fba9836ac4be475a80d307cbd4283073726d55e105883778743f1abcc6c210

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 132.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bf414abc0ca6d01891bbdd1f90657c0d143e379d7aa7d828984e369420883f2b
MD5 a5ed618bef9e9ab6df47ae7e3adf11dc
BLAKE2b-256 91875b342d1c8731401ef1dab9abda8dbee587176f571eb742ac7ef56b1dcb21

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyStats-0.1.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 116.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for PyStats-0.1.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 27c6dd3163b8afc0d25051165d6f984c049afa9e8defc48b7d95a1e2f1258313
MD5 65d1d50044cba496e938e38f9677d21c
BLAKE2b-256 0ab9a89f64b95663b5528a342484508992ea2b3f2cbf7d723d2ea95498690e6b

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp36-cp36m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp36-cp36m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4747bd4e5215e4f7ccf2f729c6e2846e0f7858ac371f7057d6068cc5b4fcae48
MD5 d83c118a12131ef375c210ca0c88ca60
BLAKE2b-256 5be798445c88f84eaeb72479e65939395427b7921d5feefe271911152c65430e

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp36-cp36m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp36-cp36m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1b0c886a8c15733a6aea30d86821cc5c4e405959bce185af2def8d6d5c6b22b1
MD5 aaf6b0de9517ffcc1db62a6b68252329
BLAKE2b-256 661ac056712923f71a70f6f8e63963e753cd83986d93d9d39221650d676dc595

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b4396a24094f2fcebe50d95b2eb77c66a3b77df63c618e0fd5214d2fc6b673b
MD5 a09ecda0b7f6a6f4c5a72b439c738f1a
BLAKE2b-256 5280fd8021c11ec874fab3cee90effcab409901c5b18d554ce86861117ff2f05

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8ecdcafe87f2b4da53281364e4cad9a14505ed7aff80e7ecb259ea9213b8d5c1
MD5 be4344f588e8e0f26627c58b331655b7
BLAKE2b-256 46af1481d3394d75b2163f7d394c0535f28e0ba93a64e1d235a475358adb6792

See more details on using hashes here.

File details

Details for the file PyStats-0.1.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyStats-0.1.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 13dc33d8865de511c1409937f5d4e5916abdf7c6eccf12b7ab79c642a24930f2
MD5 26416181690f3ef22befa934acd54de8
BLAKE2b-256 4180990f78e0ea724d68380c7893e3bf91195f4eabc82e0173432ce29deb3df7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page