Skip to main content

Python wrapper for SubDisc: Subgroup Discovery

Project description

pySubDisc

pySubDisc is a Python wrapper for SubDisc: Subgroup Discovery.

This package is still early in development and all functionality and syntax are subject to change.

Installation

This will be streamlined soon:

  • From https://github.com/SubDisc/SubDisc, use mvn package to build target/subdisc-gui.jar
  • Place subdisc-gui.jar in src/pysubdisc/jars
  • Run pip install . from the root directory of the repository (containing pyproject.toml)

Example

Using the data from https://github.com/SubDisc/SubDisc/blob/main/adult.txt :

import pysubdisc
import pandas

data = pandas.read_csv('adult.txt')
sd = pysubdisc.singleNominalTarget(data, 'target', 'gr50K')
sd.qualityMeasureMinimum = 0.25
sd.run()
print(sd.asDataFrame())
Depth Coverage Quality Target Share Positives p-Value Conditions
0 1 443 0.517601 0.440181 195 nan marital-status = 'Married-civ-spouse'
1 1 376 0.453305 0.446809 168 nan relationship = 'Husband'
2 1 327 0.359959 0.428135 140 nan education-num >= 11.0
3 1 616 0.354077 0.334416 206 nan age >= 33.0
4 1 728 0.326105 0.311813 227 nan age >= 29.0
5 1 552 0.263425 0.317029 175 nan education-num >= 10.0

Some detailed examples can be found in the /examples folder.

Documentation

The SubDisc documentation might be of help for working with pySubDisc: https://github.com/SubDisc/SubDisc/wiki.

Data loading

pySubDisc uses pandas.DataFrame tables as input. There are two options to pass these from pySubDisc to SubDisc itself:

data = pandas.read_csv('adult.txt')

# Either, create a SubgroupDiscovery target structure directly
sd = pysubdisc.singleNominalTarget(data, 'target', 'gr50K')

# Or, first load the dataframe into SubDisc for further preparation
table = pysubdisc.loadDataFrame(data)
sd = pysubdisc.singleNominalTarget(table, 'target', 'gr50K')

Data preparation

A pySubDisc.Table object can be manipulated before creating a SubDisc target using the following functions:

# Load a pandas.DataFrame object
table = pysubdisc.loadDataFrame(data)

# Describe the columns (name, type, cardinality, enabled)
print(table.describeColumns())

# Change column type to binary
table.makeColumnsBinary(['column', 'other_column']

# Change column type to numeric
table.makeColumnsNumeric(['column', 'other_column']

# Change column type to nominal
table.makeColumnsNominal(['column', 'other_column']

# Disable columns
table.disableColumns(['column', 'other_column']

# Enable columns
table.enableColumns(['column', 'other_column']

# Select a subset of the rows by passing a pandas boolean Series
table.setSelection(data['education'] == 'Bachelors')

# Reset selection of rows to the full data set
table.clearSelection()

Configuring subgroup discovery

A pySubDisc.SubgroupDiscovery object can be created by the following target functions:

# single nominal target
sd = pysubdisc.singleNominalTarget(data, targetColumn, targetValue)

# single numeric target
sd = pysubdisc.singleNumericTarget(data, targetColumn)

# double regression target
sd = pysubdisc.doubleRegressionTarget(data, primaryTargetColumn, secondaryTargetColumn)

# double correlation target
sd = pysubdisc.doubleCorrelationTarget(data, primaryTargetColumn, secondaryTargetColumn)

# double binary target
sd = pysubdisc.doubleBinaryTarget(data, primaryTargetColumn, secondaryTargetColumn)

# multi numeric target
sd = pysubdisc.multiNumericTarget(data, targetColumns)

After creating a pySubDisc.SubgroupDiscovery object, you can configure its search parameters. For example:

print(sd.describeSearchParameters())

sd.numericStrategy = 'NUMERIC_BEST'
sd.qualityMeasure = 'RELATIVE_WRACC'
sd.qualityMeasureMinimum = 2
sd.searchDepth = 2

An appropriate value of the qualityMeasure option can in particular be computed for various target types using the computeThreshold() function.

# If setAsMinimum is set to True, the qualityMeasureMinimum parameter is updated directly
threshold = sd.computeThreshold(significanceLevel=0.05, method='SWAP_RANDOMIZATION', amount=100, setAsMinimum=True)

Running subgroup discovery

After configuring the search parameters, you can run the subgroup discovery process by calling the run() method.

sd.run()

Examining the results

# The resulting subgroups are given as a pandas.DataFrame, with one row per subgroup
print(sd.asDataFrame())

The function getSubgroupMembers() returns a set of members of a subgroup as a pandas boolean Series.

# Get rows corresponding to subgroup #0
subset = data[sd.getSubgroupMembers(0)]

For a number of the target types, a showModel() method is available to aid visualization of the discovered subgroups. The scripts in the /examples directory demonstrate its use.

The function getPatternTeam() returns a Pattern Team for the discovered subgroups.

# if returnGrouping is True, getPatternTeam will also return
# the grouping of subgroups according to the pattern team
patternTeam, grouping = sd.getPatternTeam(3, returnGrouping=True)

print(patternTeam)

# print the subgroups for the first of the three determined groups
df = sd.asDataFrame()
print(df[grouping[0]])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysubdisc-0.1.1159.tar.gz (9.4 MB view details)

Uploaded Source

Built Distribution

pysubdisc-0.1.1159-py3-none-any.whl (9.4 MB view details)

Uploaded Python 3

File details

Details for the file pysubdisc-0.1.1159.tar.gz.

File metadata

  • Download URL: pysubdisc-0.1.1159.tar.gz
  • Upload date:
  • Size: 9.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pysubdisc-0.1.1159.tar.gz
Algorithm Hash digest
SHA256 d612402b03c647cca169cda821ba7bb677ff75ff209f4e85e07efd19d9f7743a
MD5 2db095e7bf824bb7396dace1bc3b3b63
BLAKE2b-256 c45bd7932ea39295305014efb00c271e7333fe842688047057aea96d459798cd

See more details on using hashes here.

File details

Details for the file pysubdisc-0.1.1159-py3-none-any.whl.

File metadata

File hashes

Hashes for pysubdisc-0.1.1159-py3-none-any.whl
Algorithm Hash digest
SHA256 ed4f35714a409f9eeb46cfbacdf964d5567f0afca33b06a56bb1802be43f2d2f
MD5 fac77bc74360792ab854b260aaf6e76a
BLAKE2b-256 f2576640e683c2a2dcc5e2c827cb361c5adcb6b0998d4bd1b87e55526cfa075c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page