Python wrapper for SubDisc: Subgroup Discovery
Project description
pySubDisc
pySubDisc is a Python wrapper for SubDisc: Subgroup Discovery.
This package is still early in development and all functionality and syntax are subject to change.
Installation
This will be streamlined soon:
- From https://github.com/SubDisc/SubDisc, use
mvn package
to buildtarget/subdisc-gui.jar
- Place
subdisc-gui.jar
insrc/pysubdisc/jars
- Run
pip install .
from the root directory of the repository (containing pyproject.toml)
Example
Using the data from https://github.com/SubDisc/SubDisc/blob/main/adult.txt :
import pysubdisc
import pandas
data = pandas.read_csv('adult.txt')
sd = pysubdisc.singleNominalTarget(data, 'target', 'gr50K')
sd.qualityMeasureMinimum = 0.25
sd.run()
print(sd.asDataFrame())
Depth | Coverage | Quality | Target Share | Positives | p-Value | Conditions | |
---|---|---|---|---|---|---|---|
0 | 1 | 443 | 0.517601 | 0.440181 | 195 | nan | marital-status = 'Married-civ-spouse' |
1 | 1 | 376 | 0.453305 | 0.446809 | 168 | nan | relationship = 'Husband' |
2 | 1 | 327 | 0.359959 | 0.428135 | 140 | nan | education-num >= 11.0 |
3 | 1 | 616 | 0.354077 | 0.334416 | 206 | nan | age >= 33.0 |
4 | 1 | 728 | 0.326105 | 0.311813 | 227 | nan | age >= 29.0 |
5 | 1 | 552 | 0.263425 | 0.317029 | 175 | nan | education-num >= 10.0 |
Some detailed examples can be found in the /examples folder.
Documentation
The SubDisc documentation might be of help for working with pySubDisc: https://github.com/SubDisc/SubDisc/wiki.
Data loading
pySubDisc uses pandas.DataFrame
tables as input. There are two options to pass these from pySubDisc to SubDisc itself:
data = pandas.read_csv('adult.txt')
# Either, create a SubgroupDiscovery target structure directly
sd = pysubdisc.singleNominalTarget(data, 'target', 'gr50K')
# Or, first load the dataframe into SubDisc for further preparation
table = pysubdisc.loadDataFrame(data)
sd = pysubdisc.singleNominalTarget(table, 'target', 'gr50K')
Data preparation
A pySubDisc.Table
object can be manipulated before creating a SubDisc target using the following functions:
# Load a pandas.DataFrame object
table = pysubdisc.loadDataFrame(data)
# Describe the columns (name, type, cardinality, enabled)
print(table.describeColumns())
# Change column type to binary
table.makeColumnsBinary(['column', 'other_column']
# Change column type to numeric
table.makeColumnsNumeric(['column', 'other_column']
# Change column type to nominal
table.makeColumnsNominal(['column', 'other_column']
# Disable columns
table.disableColumns(['column', 'other_column']
# Enable columns
table.enableColumns(['column', 'other_column']
# Select a subset of the rows by passing a pandas boolean Series
table.setSelection(data['education'] == 'Bachelors')
# Reset selection of rows to the full data set
table.clearSelection()
Configuring subgroup discovery
A pySubDisc.SubgroupDiscovery
object can be created by the following target functions:
# single nominal target
sd = pysubdisc.singleNominalTarget(data, targetColumn, targetValue)
# single numeric target
sd = pysubdisc.singleNumericTarget(data, targetColumn)
# double regression target
sd = pysubdisc.doubleRegressionTarget(data, primaryTargetColumn, secondaryTargetColumn)
# double correlation target
sd = pysubdisc.doubleCorrelationTarget(data, primaryTargetColumn, secondaryTargetColumn)
# double binary target
sd = pysubdisc.doubleBinaryTarget(data, primaryTargetColumn, secondaryTargetColumn)
# multi numeric target
sd = pysubdisc.multiNumericTarget(data, targetColumns)
After creating a pySubDisc.SubgroupDiscovery
object, you can configure its search parameters. For example:
print(sd.describeSearchParameters())
sd.numericStrategy = 'NUMERIC_BEST'
sd.qualityMeasure = 'RELATIVE_WRACC'
sd.qualityMeasureMinimum = 2
sd.searchDepth = 2
An appropriate value of the qualityMeasure
option can in particular be computed for various target types using the computeThreshold()
function.
# If setAsMinimum is set to True, the qualityMeasureMinimum parameter is updated directly
threshold = sd.computeThreshold(significanceLevel=0.05, method='SWAP_RANDOMIZATION', amount=100, setAsMinimum=True)
Running subgroup discovery
After configuring the search parameters, you can run the subgroup discovery process by calling the run()
method.
sd.run()
Examining the results
# The resulting subgroups are given as a pandas.DataFrame, with one row per subgroup
print(sd.asDataFrame())
The function getSubgroupMembers()
returns a set of members of a subgroup as a pandas boolean Series.
# Get rows corresponding to subgroup #0
subset = data[sd.getSubgroupMembers(0)]
For a number of the target types, a showModel()
method is available to aid visualization of the discovered subgroups. The scripts in the /examples
directory demonstrate its use.
The function getPatternTeam()
returns a Pattern Team for the discovered subgroups.
# if returnGrouping is True, getPatternTeam will also return
# the grouping of subgroups according to the pattern team
patternTeam, grouping = sd.getPatternTeam(3, returnGrouping=True)
print(patternTeam)
# print the subgroups for the first of the three determined groups
df = sd.asDataFrame()
print(df[grouping[0]])
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pysubdisc-0.1.1159.tar.gz
.
File metadata
- Download URL: pysubdisc-0.1.1159.tar.gz
- Upload date:
- Size: 9.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d612402b03c647cca169cda821ba7bb677ff75ff209f4e85e07efd19d9f7743a |
|
MD5 | 2db095e7bf824bb7396dace1bc3b3b63 |
|
BLAKE2b-256 | c45bd7932ea39295305014efb00c271e7333fe842688047057aea96d459798cd |
File details
Details for the file pysubdisc-0.1.1159-py3-none-any.whl
.
File metadata
- Download URL: pysubdisc-0.1.1159-py3-none-any.whl
- Upload date:
- Size: 9.4 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ed4f35714a409f9eeb46cfbacdf964d5567f0afca33b06a56bb1802be43f2d2f |
|
MD5 | fac77bc74360792ab854b260aaf6e76a |
|
BLAKE2b-256 | f2576640e683c2a2dcc5e2c827cb361c5adcb6b0998d4bd1b87e55526cfa075c |