Skip to main content

Statistics of list of (x, y) pairs from calculator-style summation registers.

Project description

Statistics with Calculator-style Summation Registers

Statistics of list of (x, y) pairs from calculator-style summation registers.

CONTENTS

Why use this package?

Use this package to obtain summary statistics of a list of $(x, y)$ pairs when the pairs are presented in sequence, such as from a control system. It is not necessary to retain the entire list in memory, this package will retain the cumulative values necessary to compute all analytical results.

There are no external dependencies on add-on packages such as numpy or scipy. Only the math package from the Python Standard Library is used.

Statistics may be calculated at any time from the summation registers.

The $(x, y)$ values may be entered in any order. It is not necessary to sort them.

Examples

In [1]: import pysumreg

In [2]: reg = pysumreg.SummationRegisters()

mean and standard deviation

In [3]: reg.clear()
   ...: reg.add(1, -1)
   ...: reg.add(2, -2)
   ...: reg.add(3, -3)
   ...: print(f"{reg.mean_x=}")
   ...: print(f"{reg.stddev_x=}")
   ...: print(f"{reg.mean_y=}")
   ...: print(f"{reg.stddev_y=}")
   ...: print(f"{reg.min_x=}")
   ...: print(f"{reg.max_x=}")
   ...: print(f"{reg.min_y=}")
   ...: print(f"{reg.max_y=}")
   ...: print(f"{reg.x_at_max_y=}")
   ...: print(f"{reg.x_at_min_y=}")
   ...: 
reg.mean_x=2.0
reg.stddev_x=1.0
reg.mean_y=-2.0
reg.stddev_y=1.0
reg.min_x=1
reg.max_x=3
reg.min_y=-3
reg.max_y=-1
reg.x_at_max_y=1
reg.x_at_min_y=3

linear regression & correlation coefficient

In [4]: reg.clear()
   ...: reg.add(1, -1)
   ...: reg.add(2, -2)
   ...: reg.add(3, -3)
   ...: print(f"{reg.correlation=}")
   ...: print(f"{reg.intercept=}")
   ...: print(f"{reg.slope=}")
   ...: 
reg.correlation=-1.0
reg.intercept=0.0
reg.slope=-1.0

peak analysis: centroid and width of x weighted by y

In [5]: reg.clear()
   ...: reg.add(1, 0)
   ...: reg.add(2, 1)
   ...: reg.add(3, 0)
   ...: print(f"{reg.max_y=}")
   ...: print(f"{reg.centroid=}")
   ...: print(f"{reg.sigma=}")
   ...: 
reg.max_y=1
reg.centroid=2.0
reg.sigma=0.0

In [6]: reg.add(1.5, 0.5)
   ...: reg.add(2.5, 0.5)
   ...: print(f"{reg.max_y=}")
   ...: print(f"{reg.centroid=}")
   ...: print(f"{reg.sigma=}")
   ...: 
reg.max_y=1
reg.centroid=2.0
reg.sigma=0.3535533905932738

Installation

This package may be installed by any of these commands:

  • pip install pysumreg
  • conda install -c conda-forge pysumreg
  • mamba install -c conda-forge pysumreg
  • micromamba install -c conda-forge pysumreg

About

Release PyPI Conda-forge Platforms
Release PyPI Conda Version Conda Platforms
Python Unit Tests Code Coverage
Python Unit Tests Coverage Status

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysumreg-1.0.4rc2.tar.gz (21.3 kB view details)

Uploaded Source

Built Distribution

pysumreg-1.0.4rc2-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file pysumreg-1.0.4rc2.tar.gz.

File metadata

  • Download URL: pysumreg-1.0.4rc2.tar.gz
  • Upload date:
  • Size: 21.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for pysumreg-1.0.4rc2.tar.gz
Algorithm Hash digest
SHA256 083a9267e66bb85db30a451dec437ed1eb8946d6ae525913924102e8eafe7f38
MD5 4cdd9cda3653ea12427dc73b27f2aa5c
BLAKE2b-256 89f5f57a33408bc87ed7a608e803d74f68f3b76a7cc289bcae157e41a7189405

See more details on using hashes here.

File details

Details for the file pysumreg-1.0.4rc2-py3-none-any.whl.

File metadata

  • Download URL: pysumreg-1.0.4rc2-py3-none-any.whl
  • Upload date:
  • Size: 12.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for pysumreg-1.0.4rc2-py3-none-any.whl
Algorithm Hash digest
SHA256 ee385ce5fda28d8de94b8de9ec514a06b60253fa8ec2b4bb71c018ae7a6fcec5
MD5 e5c7a3c6dd35e782b6470ac9e7308b94
BLAKE2b-256 31a8eb5475a136c01fef011fc50cd483b23ee817ac9b89533f37216fd63f8026

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page