Skip to main content

Statistics of list of (x, y) pairs from calculator-style summation registers.

Project description

Statistics with Calculator-style Summation Registers

Statistics of list of (x, y) pairs from calculator-style summation registers.

CONTENTS

Why use this package?

Use this package to obtain summary statistics of a list of $(x, y)$ pairs when the pairs are presented in sequence, such as from a control system. It is not necessary to retain the entire list in memory, this package will retain the cumulative values necessary to compute all analytical results.

There are no external dependencies on add-on packages such as numpy or scipy. Only the math package from the Python Standard Library is used.

Statistics may be calculated at any time from the summation registers.

The $(x, y)$ values may be entered in any order. It is not necessary to sort them.

Examples

In [1]: import pysumreg

In [2]: reg = pysumreg.SummationRegisters()

mean and standard deviation

In [3]: reg.clear()
   ...: reg.add(1, -1)
   ...: reg.add(2, -2)
   ...: reg.add(3, -3)
   ...: print(f"{reg.mean_x=}")
   ...: print(f"{reg.stddev_x=}")
   ...: print(f"{reg.mean_y=}")
   ...: print(f"{reg.stddev_y=}")
   ...: print(f"{reg.min_x=}")
   ...: print(f"{reg.max_x=}")
   ...: print(f"{reg.min_y=}")
   ...: print(f"{reg.max_y=}")
   ...: print(f"{reg.x_at_max_y=}")
   ...: print(f"{reg.x_at_min_y=}")
   ...: 
reg.mean_x=2.0
reg.stddev_x=1.0
reg.mean_y=-2.0
reg.stddev_y=1.0
reg.min_x=1
reg.max_x=3
reg.min_y=-3
reg.max_y=-1
reg.x_at_max_y=1
reg.x_at_min_y=3

linear regression & correlation coefficient

In [4]: reg.clear()
   ...: reg.add(1, -1)
   ...: reg.add(2, -2)
   ...: reg.add(3, -3)
   ...: print(f"{reg.correlation=}")
   ...: print(f"{reg.intercept=}")
   ...: print(f"{reg.slope=}")
   ...: 
reg.correlation=-1.0
reg.intercept=0.0
reg.slope=-1.0

peak analysis: centroid and width of x weighted by y

In [5]: reg.clear()
   ...: reg.add(1, 0)
   ...: reg.add(2, 1)
   ...: reg.add(3, 0)
   ...: print(f"{reg.max_y=}")
   ...: print(f"{reg.centroid=}")
   ...: print(f"{reg.sigma=}")
   ...: 
reg.max_y=1
reg.centroid=2.0
reg.sigma=0.0

In [6]: reg.add(1.5, 0.5)
   ...: reg.add(2.5, 0.5)
   ...: print(f"{reg.max_y=}")
   ...: print(f"{reg.centroid=}")
   ...: print(f"{reg.sigma=}")
   ...: 
reg.max_y=1
reg.centroid=2.0
reg.sigma=0.3535533905932738

Installation

This package may be installed by any of these commands:

  • pip install pysumreg
  • conda install -c conda-forge pysumreg
  • mamba install -c conda-forge pysumreg
  • micromamba install -c conda-forge pysumreg

About

Release PyPI Conda-forge Platforms
Release PyPI Conda Version Conda Platforms
Python Unit Tests Code Coverage
Python Unit Tests Coverage Status

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysumreg-1.0.6rc2.tar.gz (35.5 kB view details)

Uploaded Source

Built Distribution

pysumreg-1.0.6rc2-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file pysumreg-1.0.6rc2.tar.gz.

File metadata

  • Download URL: pysumreg-1.0.6rc2.tar.gz
  • Upload date:
  • Size: 35.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pysumreg-1.0.6rc2.tar.gz
Algorithm Hash digest
SHA256 6691c32f346d803ee9c55b230441ee74bdec3aaff116d3922be2d60c8d18cd1c
MD5 313e44e25bb101e1dc4ee979920335dc
BLAKE2b-256 d11159625c3178f0b5e3adbe98f4cf39e71de88fbb8f2236166feeee60a9a9ad

See more details on using hashes here.

File details

Details for the file pysumreg-1.0.6rc2-py3-none-any.whl.

File metadata

  • Download URL: pysumreg-1.0.6rc2-py3-none-any.whl
  • Upload date:
  • Size: 16.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pysumreg-1.0.6rc2-py3-none-any.whl
Algorithm Hash digest
SHA256 96abb4c25e4828c06f115cc64afa36bf0a68ed3c977c4e89e7fc56089227226d
MD5 1f8ce0f7bf2fbb58838d21ace3baed05
BLAKE2b-256 447f78ed1477392a380c289fa5f2f230ced4a48c49187481e7ae2fb072c6fe3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page