Skip to main content

A python library to write a table in various formats: CSV / Elasticsearch / HTML / JavaScript / JSON / LTSV / Markdown / MediaWiki / Excel / Pandas / Python / reStructuredText / SQLite / TOML / TSV.

Project description

Home-page: https://github.com/thombashi/pytablewriter
Author: Tsuyoshi Hombashi
Author-email: tsuyoshi.hombashi@gmail.com
License: MIT License
Description: pytablewriter
=============

.. image:: https://badge.fury.io/py/pytablewriter.svg
:target: https://badge.fury.io/py/pytablewriter

.. image:: https://img.shields.io/pypi/pyversions/pytablewriter.svg
:target: https://pypi.python.org/pypi/pytablewriter

.. image:: https://img.shields.io/travis/thombashi/pytablewriter/master.svg?label=Linux
:target: https://travis-ci.org/thombashi/pytablewriter

.. image:: https://img.shields.io/appveyor/ci/thombashi/pytablewriter/master.svg?label=Windows
:target: https://ci.appveyor.com/project/thombashi/pytablewriter

.. image:: https://coveralls.io/repos/github/thombashi/pytablewriter/badge.svg?branch=master
:target: https://coveralls.io/github/thombashi/pytablewriter?branch=master

.. image:: https://img.shields.io/github/stars/thombashi/pytablewriter.svg?style=social&label=Star
:target: https://github.com/thombashi/pytablewriter

Summary
-------

A python library to write a table in various formats: CSV / Elasticsearch / HTML / JavaScript / JSON / LTSV / Markdown / MediaWiki / Excel / Pandas / Python / reStructuredText / SQLite / TOML / TSV.

Features
--------

- Write a table in various formats:
- CSV
- `Elasticsearch <https://www.elastic.co/products/elasticsearch>`__
- Microsoft Excel :superscript:`TM` (``.xlsx``/``.xls`` file format)
- HTML
- JSON
- `Labeled Tab-separated Values (LTSV) <http://ltsv.org/>`__
- Markdown
- MediaWiki
- reStructuredText: `Grid Tables <http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables>`__/`Simple Tables <http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple-tables>`__/`CSV Table <http://docutils.sourceforge.net/docs/ref/rst/directives.html#id4>`__
- Source code
- `Pandas <http://pandas.pydata.org/>`__ (Definition of a - `pandas.DataFrame <http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html>`__ variable)
- Python code (Definition of a nested list variable)
- JavaScript code (Definition of a nested list variable)
- SQLite database file
- Tab-separated values (TSV)
- `TOML <https://github.com/toml-lang/toml>`__
- Automatic tabular data formatting
- Alignment
- Padding
- Decimal places of numbers
- Multibyte character support
- Write table to a stream such as a file/standard-output/string-buffer

Examples
========

Write a Markdown table
----------------------

.. code:: python

import pytablewriter

writer = pytablewriter.MarkdownTableWriter()
writer.table_name = "example_table"
writer.header_list = ["int", "float", "str", "bool", "mix", "time"]
writer.value_matrix = [
[0, 0.1, "hoge", True, 0, "2017-01-01 03:04:05+0900"],
[2, "-2.23", "foo", False, None, "2017-12-23 45:01:23+0900"],
[3, 0, "bar", "true", "inf", "2017-03-03 33:44:55+0900"],
[-10, -9.9, "", "FALSE", "nan", "2017-01-01 00:00:00+0900"],
]

writer.write_table()

.. code::

# example_table
int|float|str |bool | mix | time
--:|----:|----|-----|-------:|------------------------
0| 0.10|hoge|True | 0|2017-01-01 03:04:05+0900
2|-2.23|foo |False| |2017-12-23 12:34:51+0900
3| 0.00|bar |True |Infinity|2017-03-03 22:44:55+0900
-10|-9.90| |False| NaN|2017-01-01 00:00:00+0900


Rendering result
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. figure:: ss/markdown.png
:scale: 80%
:alt: markdown_ss

Rendered markdown at GitHub

Write a reStructuredText table (Grid Tables)
--------------------------------------------


.. code:: python

import pytablewriter

writer = pytablewriter.RstGridTableWriter()
writer.table_name = "example_table"
writer.header_list = ["int", "float", "str", "bool", "mix", "time"]
writer.value_matrix = [
[0, 0.1, "hoge", True, 0, "2017-01-01 03:04:05+0900"],
[2, "-2.23", "foo", False, None, "2017-12-23 45:01:23+0900"],
[3, 0, "bar", "true", "inf", "2017-03-03 33:44:55+0900"],
[-10, -9.9, "", "FALSE", "nan", "2017-01-01 00:00:00+0900"],
]

writer.write_table()


.. code::

.. table:: example_table

+---+-----+----+-----+--------+------------------------+
|int|float|str |bool | mix | time |
+===+=====+====+=====+========+========================+
| 0| 0.10|hoge|True | 0|2017-01-01 03:04:05+0900|
+---+-----+----+-----+--------+------------------------+
| 2|-2.23|foo |False| |2017-12-23 12:34:51+0900|
+---+-----+----+-----+--------+------------------------+
| 3| 0.00|bar |True |Infinity|2017-03-03 22:44:55+0900|
+---+-----+----+-----+--------+------------------------+
|-10|-9.90| |False| NaN|2017-01-01 00:00:00+0900|
+---+-----+----+-----+--------+------------------------+

Rendering result
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. table:: example_table

+---+-----+----+-----+--------+------------------------+
|int|float|str |bool | mix | time |
+===+=====+====+=====+========+========================+
| 0| 0.10|hoge|True | 0|2017-01-01 03:04:05+0900|
+---+-----+----+-----+--------+------------------------+
| 2|-2.23|foo |False| |2017-12-23 12:34:51+0900|
+---+-----+----+-----+--------+------------------------+
| 3| 0.00|bar |True |Infinity|2017-03-03 22:44:55+0900|
+---+-----+----+-----+--------+------------------------+
|-10|-9.90| |False| NaN|2017-01-01 00:00:00+0900|
+---+-----+----+-----+--------+------------------------+

Write a table with JavaScript format (as a nested list variable definition)
---------------------------------------------------------------------------

.. code:: python

import pytablewriter

writer = pytablewriter.JavaScriptTableWriter()
writer.table_name = "example_table"
writer.header_list = ["int", "float", "str", "bool", "mix", "time"]
writer.value_matrix = [
[0, 0.1, "hoge", True, 0, "2017-01-01 03:04:05+0900"],
[2, "-2.23", "foo", False, None, "2017-12-23 45:01:23+0900"],
[3, 0, "bar", "true", "inf", "2017-03-03 33:44:55+0900"],
[-10, -9.9, "", "FALSE", "nan", "2017-01-01 00:00:00+0900"],
]

writer.write_table()

.. code:: js

const example_table = [
["int", "float", "str", "bool", "mix", "time"],
[0, 0.10, "hoge", true, 0, "2017-01-01 03:04:05+0900"],
[2, -2.23, "foo", false, null, "2017-12-23 12:34:51+0900"],
[3, 0.00, "bar", true, Infinity, "2017-03-03 22:44:55+0900"],
[-10, -9.90, "", false, NaN, "2017-01-01 00:00:00+0900"]
];

Write a table to an Excel sheet
-------------------------------

.. code:: python

import pytablewriter

writer = pytablewriter.ExcelXlsxTableWriter()
writer.open_workbook("sample.xlsx")

writer.make_worksheet("example")
writer.header_list = ["int", "float", "str", "bool", "mix", "time"]
writer.value_matrix = [
[0, 0.1, "hoge", True, 0, "2017-01-01 03:04:05+0900"],
[2, "-2.23", "foo", False, None, "2017-12-23 12:34:51+0900"],
[3, 0, "bar", "true", "inf", "2017-03-03 22:44:55+0900"],
[-10, -9.9, "", "FALSE", "nan", "2017-01-01 00:00:00+0900"],
]
writer.write_table()

writer.close()


Output of Excel book
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. figure:: ss/excel_single.png
:scale: 100%
:alt: excel_single

Output excel file (``sample_single.xlsx``)

Write a Markdown table from ``pandas.DataFrame`` instance
---------------------------------------------------------


.. code:: python

import pandas as pd
import pytablewriter
from StringIO import StringIO

csv_data = StringIO(u""""i","f","c","if","ifc","bool","inf","nan","mix_num","time"
1,1.10,"aa",1.0,"1",True,Infinity,NaN,1,"2017-01-01 00:00:00+09:00"
2,2.20,"bbb",2.2,"2.2",False,Infinity,NaN,Infinity,"2017-01-02 03:04:05+09:00"
3,3.33,"cccc",-3.0,"ccc",True,Infinity,NaN,NaN,"2017-01-01 00:00:00+09:00"
""")
df = pd.read_csv(csv_data, sep=',')

writer = pytablewriter.MarkdownTableWriter()
writer.from_dataframe(df)
writer.write_table()


.. code::

i | f | c | if |ifc|bool | inf |nan|mix_num | time
--:|---:|----|---:|---|-----|--------|---|-------:|-------------------------
1|1.10|aa | 1.0|1 |True |Infinity|NaN| 1|2017-01-01 00:00:00+09:00
2|2.20|bbb | 2.2|2.2|False|Infinity|NaN|Infinity|2017-01-02 03:04:05+09:00
3|3.33|cccc|-3.0|ccc|True |Infinity|NaN| NaN|2017-01-01 00:00:00+09:00

Create Elasticsearch index and put data
---------------------------------------

.. code:: python

import datetime
import json

from elasticsearch import Elasticsearch
import pytablewriter as ptw

es = Elasticsearch(hosts="localhost:9200")
index_name = "es_writer_example"

writer = ptw.ElasticsearchWriter()
writer.stream = es
writer.table_name = index_name
writer.header_list = [
"str", "byte", "short", "int", "long", "float", "date", "bool", "ip",
]
writer.value_matrix = [
[
"abc", 100, 10000, 2000000000, 200000000000, 0.1,
datetime.datetime(2017, 1, 2, 3, 4, 5), True, "127.0.0.1",
],
[
"def", -10, -1000, -200000000, -20000000000, 100.1,
datetime.datetime(2017, 6, 5, 4, 5, 2), False, "::1",
],
]

# delete existing index ---
es.indices.delete(index=index_name, ignore=404)

# create an index and put data ---
writer.write_table()

# display the result ---
es.indices.refresh(index=index_name)

print("----- mappings -----")
response = es.indices.get_mapping(index=index_name, doc_type="table")
print("{}\n".format(json.dumps(response, indent=4)))

print("----- documents -----")
response = es.search(
index=index_name,
doc_type="table",
body={
"query": {"match_all": {}}
}
)
for hit in response["hits"]["hits"]:
print(json.dumps(hit["_source"], indent=4))

.. code::

----- mappings -----
{
"es_writer_example": {
"mappings": {
"table": {
"properties": {
"bool": {
"type": "boolean"
},
"byte": {
"type": "byte"
},
"date": {
"type": "date",
"format": "date_optional_time"
},
"float": {
"type": "double"
},
"int": {
"type": "integer"
},
"ip": {
"type": "ip"
},
"long": {
"type": "long"
},
"short": {
"type": "short"
},
"str": {
"type": "text"
}
}
}
}
}
}

----- documents -----
{
"str": "def",
"byte": -10,
"short": -1000,
"int": -200000000,
"long": -20000000000,
"float": 100.1,
"date": "2017-06-05T04:05:02",
"bool": false,
"ip": "::1"
}
{
"str": "abc",
"byte": 100,
"short": 10000,
"int": 2000000000,
"long": 200000000000,
"float": 0.1,
"date": "2017-01-02T03:04:05",
"bool": true,
"ip": "127.0.0.1"
}

Write a table using multibyte character
---------------------------------------

You can use multibyte character as table data.

.. code:: python

import pytablewriter

writer = pytablewriter.RstSimpleTableWriter()
writer.table_name = "生成に関するパターン"
writer.header_list = ["パターン名", "概要", "GoF", "Code Complete[1]"]
writer.value_matrix = [
["Abstract Factory", "関連する一連のインスタンスを状況に応じて、適切に生成する方法を提供する。", "Yes", "Yes"],
["Builder", "複合化されたインスタンスの生成過程を隠蔽する。", "Yes", "No"],
["Factory Method", "実際に生成されるインスタンスに依存しない、インスタンスの生成方法を提供する。", "Yes", "Yes"],
["Prototype", "同様のインスタンスを生成するために、原型のインスタンスを複製する。", "Yes", "No"],
["Singleton", "あるクラスについて、インスタンスが単一であることを保証する。", "Yes", "Yes"],
]
writer.write_table()


.. figure:: ss/multi_byte_char.png
:scale: 100%
:alt: multi_byte_char_table

Output of multi-byte character table


For more information
--------------------

More examples are available at
http://pytablewriter.rtfd.io/en/latest/pages/examples/index.html

Installation
============

::

pip install pytablewriter


Dependencies
============

Python 2.7+ or 3.3+

- `DataPropery <https://github.com/thombashi/DataProperty>`__
- `dominate <http://github.com/Knio/dominate/>`__
- `elasticsearch <https://github.com/elastic/elasticsearch-py>`__
- `logbook <http://logbook.readthedocs.io/en/stable/>`__
- `mbstrdecoder <https://github.com/thombashi/mbstrdecoder>`__
- `pathvalidate <https://github.com/thombashi/pathvalidate>`__
- `pytablereader <https://github.com/thombashi/pytablereader>`__
- `SimpleSQLite <https://github.com/thombashi/SimpleSQLite>`__
- `six <https://pypi.python.org/pypi/six/>`__
- `toml <https://github.com/uiri/toml>`__
- `typepy <https://github.com/thombashi/typepy>`__
- `XlsxWriter <http://xlsxwriter.readthedocs.io/>`__
- `xlwt <http://www.python-excel.org/>`__


Test dependencies
-----------------

- `pytest <http://pytest.org/latest/>`__
- `pytest-runner <https://pypi.python.org/pypi/pytest-runner>`__
- `tox <https://testrun.org/tox/latest/>`__

Documentation
=============

http://pytablewriter.rtfd.io/

Related Project
===============

- `pytablereader <https://github.com/thombashi/pytablereader>`__
- Tabular data loaded by ``pytablereader`` can be written another tabular data format with ``pytablewriter``.


Keywords: table,CSV,Excel,JavaScript,JSON,LTSV,Markdown,MediaWiki,HTML,pandas,reStructuredText,SQLite,TSV,TOML
Platform: UNKNOWN
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytablewriter-0.20.2.tar.gz (82.2 kB view details)

Uploaded Source

Built Distribution

pytablewriter-0.20.2-py2.py3-none-any.whl (47.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytablewriter-0.20.2.tar.gz.

File metadata

File hashes

Hashes for pytablewriter-0.20.2.tar.gz
Algorithm Hash digest
SHA256 e314564a7255850de0b9a78e91acb7a893d46bf85168b9da16cdd751912d85e4
MD5 2fd97adc8e8edf66b4d2c0ad3703afaa
BLAKE2b-256 dbad8682c32f22daa16a2b8b673c9e31827a7296f8d24a1e35a42914ac272dcd

See more details on using hashes here.

File details

Details for the file pytablewriter-0.20.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for pytablewriter-0.20.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3bdf59ed40d0c9d97648a7a46138735d410b5770498984231861e3cbb429f02e
MD5 2276c0117f0b07d7fd9c4e4c9e978aed
BLAKE2b-256 bc647b76a7cc9e0e508f2df8f5fff9086f192ba4ca39f60a363c632bdb7251a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page