Skip to main content

pytablewriter is a Python library to write a table in various formats: CSV / Elasticsearch / HTML / JavaScript / JSON / LaTeX / LDJSON / LTSV / Markdown / MediaWiki / NumPy / Excel / Pandas / Python / reStructuredText / SQLite / TOML / TSV.

Project description

Summary

pytablewriter is a Python library to write a table in various formats: CSV / Elasticsearch / HTML / JavaScript / JSON / LaTeX / LDJSON / LTSV / Markdown / MediaWiki / NumPy / Excel / Pandas / Python / reStructuredText / SQLite / TOML / TSV.

PyPI package version Supported Python versions Linux/macOS CI status Windows CI status Test coverage GitHub stars

Features

  • Write a table in various formats:
  • Automatic tabular data formatting
    • Alignment

    • Padding

    • Decimal places of numbers

  • Configure cell styles:
    • Text alignment

    • Font size/weight

    • Thousand separator for numbers: e.g. 1,000/1 000

  • Multibyte character support

  • Write table to a stream such as a file/standard-output/string-buffer/Jupyter-Notebook

  • Get rendered tabular text

  • ANSI color support

Examples

Write tables

Write a Markdown table

Sample Code:
import pytablewriter

writer = pytablewriter.MarkdownTableWriter()
writer.table_name = "example_table"
writer.headers = ["int", "float", "str", "bool", "mix", "time"]
writer.value_matrix = [
    [0,   0.1,      "hoge", True,   0,      "2017-01-01 03:04:05+0900"],
    [2,   "-2.23",  "foo",  False,  None,   "2017-12-23 45:01:23+0900"],
    [3,   0,        "bar",  "true",  "inf", "2017-03-03 33:44:55+0900"],
    [-10, -9.9,     "",     "FALSE", "nan", "2017-01-01 00:00:00+0900"],
]

writer.write_table()
Output:
# example_table
|int|float|str |bool |  mix   |          time          |
|--:|----:|----|-----|-------:|------------------------|
|  0| 0.10|hoge|True |       0|2017-01-01 03:04:05+0900|
|  2|-2.23|foo |False|        |2017-12-23 12:34:51+0900|
|  3| 0.00|bar |True |Infinity|2017-03-03 22:44:55+0900|
|-10|-9.90|    |False|     NaN|2017-01-01 00:00:00+0900|
Rendering Result:
markdown_ss

Rendered markdown at GitHub

Write a Markdown table with a margin
Sample Code:
import pytablewriter

writer = pytablewriter.MarkdownTableWriter()
writer.table_name = "write example with a margin"
writer.headers = ["int", "float", "str", "bool", "mix", "time"]
writer.value_matrix = [
    [0,   0.1,      "hoge", True,   0,      "2017-01-01 03:04:05+0900"],
    [2,   "-2.23",  "foo",  False,  None,   "2017-12-23 45:01:23+0900"],
    [3,   0,        "bar",  "true",  "inf", "2017-03-03 33:44:55+0900"],
    [-10, -9.9,     "",     "FALSE", "nan", "2017-01-01 00:00:00+0900"],
]
writer.margin = 1  # add a whitespace for both sides of each cell

writer.write_table()
Output:
# write example with a margin
| int | float | str  | bool  |   mix    |           time           |
|----:|------:|------|-------|---------:|--------------------------|
|   0 |  0.10 | hoge | True  |        0 | 2017-01-01 03:04:05+0900 |
|   2 | -2.23 | foo  | False |          | 2017-12-23 12:34:51+0900 |
|   3 |  0.00 | bar  | True  | Infinity | 2017-03-03 22:44:55+0900 |
| -10 | -9.90 |      | False |      NaN | 2017-01-01 00:00:00+0900 |

margin attribute can be available for all of the text format writer classes.

Write a reStructuredText table (Grid Tables)

Sample Code:
import pytablewriter

writer = pytablewriter.RstGridTableWriter()
writer.table_name = "example_table"
writer.headers = ["int", "float", "str", "bool", "mix", "time"]
writer.value_matrix = [
    [0,   0.1,      "hoge", True,   0,      "2017-01-01 03:04:05+0900"],
    [2,   "-2.23",  "foo",  False,  None,   "2017-12-23 45:01:23+0900"],
    [3,   0,        "bar",  "true",  "inf", "2017-03-03 33:44:55+0900"],
    [-10, -9.9,     "",     "FALSE", "nan", "2017-01-01 00:00:00+0900"],
]

writer.write_table()
Output:
.. table:: example_table

    +---+-----+----+-----+--------+------------------------+
    |int|float|str |bool |  mix   |          time          |
    +===+=====+====+=====+========+========================+
    |  0| 0.10|hoge|True |       0|2017-01-01 03:04:05+0900|
    +---+-----+----+-----+--------+------------------------+
    |  2|-2.23|foo |False|        |2017-12-23 12:34:51+0900|
    +---+-----+----+-----+--------+------------------------+
    |  3| 0.00|bar |True |Infinity|2017-03-03 22:44:55+0900|
    +---+-----+----+-----+--------+------------------------+
    |-10|-9.90|    |False|     NaN|2017-01-01 00:00:00+0900|
    +---+-----+----+-----+--------+------------------------+
Rendering Result:
example_table

int

float

str

bool

mix

time

0

0.10

hoge

True

0

2017-01-01 03:04:05+0900

2

-2.23

foo

False

2017-12-23 12:34:51+0900

3

0.00

bar

True

Infinity

2017-03-03 22:44:55+0900

-10

-9.90

False

NaN

2017-01-01 00:00:00+0900

Write a table with JavaScript format (as a nested list variable definition)

Sample Code:
import pytablewriter

writer = pytablewriter.JavaScriptTableWriter()
writer.table_name = "example_table"
writer.headers = ["int", "float", "str", "bool", "mix", "time"]
writer.value_matrix = [
    [0,   0.1,      "hoge", True,   0,      "2017-01-01 03:04:05+0900"],
    [2,   "-2.23",  "foo",  False,  None,   "2017-12-23 45:01:23+0900"],
    [3,   0,        "bar",  "true",  "inf", "2017-03-03 33:44:55+0900"],
    [-10, -9.9,     "",     "FALSE", "nan", "2017-01-01 00:00:00+0900"],
]

writer.write_table()
Output:
const example_table = [
    ["int", "float", "str", "bool", "mix", "time"],
    [0, 0.10, "hoge", true, 0, "2017-01-01 03:04:05+0900"],
    [2, -2.23, "foo", false, null, "2017-12-23 12:34:51+0900"],
    [3, 0.00, "bar", true, Infinity, "2017-03-03 22:44:55+0900"],
    [-10, -9.90, "", false, NaN, "2017-01-01 00:00:00+0900"]
];

Write a table to an Excel sheet

Sample Code:
from pytablewriter import ExcelXlsxTableWriter

writer = ExcelXlsxTableWriter()
writer.table_name = "example"
writer.headers = ["int", "float", "str", "bool", "mix", "time"]
writer.value_matrix = [
    [0,   0.1,      "hoge", True,   0,      "2017-01-01 03:04:05+0900"],
    [2,   "-2.23",  "foo",  False,  None,   "2017-12-23 12:34:51+0900"],
    [3,   0,        "bar",  "true",  "inf", "2017-03-03 22:44:55+0900"],
    [-10, -9.9,     "",     "FALSE", "nan", "2017-01-01 00:00:00+0900"],
]
writer.dump("sample.xlsx")
Output:
excel_single

Output excel file (sample_single.xlsx)

Write a Markdown table from pandas.DataFrame instance

from_dataframe method of writer classes will set up tabular data from pandas.DataFrame:

Sample Code:
from textwrap import dedent
import pandas as pd
import six
from pytablewriter import MarkdownTableWriter

csv_data = six.StringIO(dedent("""\
    "i","f","c","if","ifc","bool","inf","nan","mix_num","time"
    1,1.10,"aa",1.0,"1",True,Infinity,NaN,1,"2017-01-01 00:00:00+09:00"
    2,2.20,"bbb",2.2,"2.2",False,Infinity,NaN,Infinity,"2017-01-02 03:04:05+09:00"
    3,3.33,"cccc",-3.0,"ccc",True,Infinity,NaN,NaN,"2017-01-01 00:00:00+09:00"
    """))
df = pd.read_csv(csv_data, sep=',')

writer = MarkdownTableWriter()
writer.from_dataframe(df)
writer.write_table()
Output:
| i | f  | c  | if |ifc|bool |  inf   |nan|mix_num |          time           |
|--:|---:|----|---:|---|-----|--------|---|-------:|-------------------------|
|  1|1.10|aa  | 1.0|  1|True |Infinity|NaN|       1|2017-01-01 00:00:00+09:00|
|  2|2.20|bbb | 2.2|2.2|False|Infinity|NaN|Infinity|2017-01-02 03:04:05+09:00|
|  3|3.33|cccc|-3.0|ccc|True |Infinity|NaN|     NaN|2017-01-01 00:00:00+09:00|

Adding a column of the DataFrame index if add_index_column=True:

Sample Code:
import pandas as pd
from pytablewriter import MarkdownTableWriter

writer = MarkdownTableWriter()
writer.table_name = "add_index_column"
writer.from_dataframe(
    pd.DataFrame({"A": [1, 2], "B": [10, 11]}, index=["a", "b"]),
    add_index_column=True,
)
writer.write_table()
Output:
# add_index_column
|   | A | B |
|---|--:|--:|
|a  |  1| 10|
|b  |  2| 11|

Write a markdown table from a space-separated values

Sample Code:
from textwrap import dedent
import pytablewriter

writer = pytablewriter.MarkdownTableWriter()
writer.table_name = "ps"
writer.from_csv(
    dedent("""\
        USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
        root         1  0.0  0.4  77664  8784 ?        Ss   May11   0:02 /sbin/init
        root         2  0.0  0.0      0     0 ?        S    May11   0:00 [kthreadd]
        root         4  0.0  0.0      0     0 ?        I<   May11   0:00 [kworker/0:0H]
        root         6  0.0  0.0      0     0 ?        I<   May11   0:00 [mm_percpu_wq]
        root         7  0.0  0.0      0     0 ?        S    May11   0:01 [ksoftirqd/0]
    """),
    delimiter=" ")
writer.write_table()
Output:
# ps
|USER|PID|%CPU|%MEM| VSZ |RSS |TTY|STAT|START|TIME|   COMMAND    |
|----|--:|---:|---:|----:|---:|---|----|-----|----|--------------|
|root|  1|   0| 0.4|77664|8784|?  |Ss  |May11|0:02|/sbin/init    |
|root|  2|   0| 0.0|    0|   0|?  |S   |May11|0:00|[kthreadd]    |
|root|  4|   0| 0.0|    0|   0|?  |I<  |May11|0:00|[kworker/0:0H]|
|root|  6|   0| 0.0|    0|   0|?  |I<  |May11|0:00|[mm_percpu_wq]|
|root|  7|   0| 0.0|    0|   0|?  |S   |May11|0:01|[ksoftirqd/0] |

Get rendered tabular text as str

dumps method returns rendered tabular text. dumps available only for text format writers.

Sample Code:
import pytablewriter

writer = pytablewriter.MarkdownTableWriter()
writer.headers = ["int", "float", "str", "bool", "mix", "time"]
writer.value_matrix = [
    [0,   0.1,      "hoge", True,   0,      "2017-01-01 03:04:05+0900"],
    [2,   "-2.23",  "foo",  False,  None,   "2017-12-23 45:01:23+0900"],
    [3,   0,        "bar",  "true",  "inf", "2017-03-03 33:44:55+0900"],
    [-10, -9.9,     "",     "FALSE", "nan", "2017-01-01 00:00:00+0900"],
]

print(writer.dumps())
Output:
|int|float|str |bool |  mix   |          time          |
|--:|----:|----|-----|-------:|------------------------|
|  0| 0.10|hoge|True |       0|2017-01-01 03:04:05+0900|
|  2|-2.23|foo |False|        |2017-12-23 45:01:23+0900|
|  3| 0.00|bar |True |Infinity|2017-03-03 33:44:55+0900|
|-10|-9.90|    |False|     NaN|2017-01-01 00:00:00+0900|

Configure table styles

Writers can specify cell Style for each column manually by styles attribute of writer classes.

Sample Code:
from pytablewriter import MarkdownTableWriter
from pytablewriter.style import Style

writer = MarkdownTableWriter()
writer.table_name = "set style by styles"
writer.headers = [
    "auto align",
    "left align",
    "center align",
    "bold",
    "italic",
    "bold italic ts",
]
writer.value_matrix = [
    [11, 11, 11, 11, 11, 11],
    [1234, 1234, 1234, 1234, 1234, 1234],
]

# specify styles for each column
writer.styles = [
    Style(),
    Style(align="left"),
    Style(align="center"),
    Style(font_weight="bold"),
    Style(font_style="italic"),
    Style(font_weight="bold", font_style="italic", thousand_separator=","),
]

writer.write_table()
Output:
# set style by styles
|auto align|left align|center align|  bold  |italic|bold italic ts|
|---------:|----------|:----------:|-------:|-----:|-------------:|
|        11|11        |     11     |  **11**|  _11_|      _**11**_|
|      1234|1234      |    1234    |**1234**|_1234_|   _**1,234**_|

Rendering result

You can also set Style to a specific column with index or header by using set_style method:

Sample Code:
from pytablewriter import MarkdownTableWriter
from pytablewriter.style import Style

writer = MarkdownTableWriter()
writer.headers = ["A", "B", "C",]
writer.value_matrix = [[11, 11, 11], [1234, 1234, 1234]]

writer.table_name = "set style by index"
writer.set_style(1, Style(align="center", font_weight="bold"))
writer.set_style(2, Style(thousand_separator=" "))
writer.write_table()
writer.write_null_line()

writer.table_name = "set style by header"
writer.set_style("B", Style(font_style="italic"))
writer.write_table()
Output:
# set style by index
| A  |   B    |  C  |
|---:|:------:|----:|
|  11| **11** |   11|
|1234|**1234**|1 234|

# set style by header
| A  |  B   |  C  |
|---:|-----:|----:|
|  11|  _11_|   11|
|1234|_1234_|1 234|

Make tables for specific applications

Create Elasticsearch index and put data

Sample Code:
import datetime
import json

from elasticsearch import Elasticsearch
import pytablewriter as ptw

es = Elasticsearch(hosts="localhost:9200")

writer = ptw.ElasticsearchWriter()
writer.stream = es
writer.index_name = "es writer example"
writer.headers = [
    "str", "byte", "short", "int", "long", "float", "date", "bool", "ip",
]
writer.value_matrix = [
    [
        "abc", 100, 10000, 2000000000, 200000000000, 0.1,
        datetime.datetime(2017, 1, 2, 3, 4, 5), True, "127.0.0.1",
    ],
    [
        "def", -10, -1000, -200000000, -20000000000, 100.1,
        datetime.datetime(2017, 6, 5, 4, 5, 2), False, "::1",
    ],
]

# delete existing index ---
es.indices.delete(index=writer.index_name, ignore=404)

# create an index and put data ---
writer.write_table()

# display the result ---
es.indices.refresh(index=writer.index_name)

print("----- mappings -----")
response = es.indices.get_mapping(index=writer.index_name, doc_type="table")
print("{}\n".format(json.dumps(response, indent=4)))

print("----- documents -----")
response = es.search(
    index=writer.index_name,
    doc_type="table",
    body={
        "query": {"match_all": {}}
    }
)
for hit in response["hits"]["hits"]:
    print(json.dumps(hit["_source"], indent=4))
Output:
----- mappings -----
{
    "es_writer_example": {
        "mappings": {
            "table": {
                "properties": {
                    "bool": {
                        "type": "boolean"
                    },
                    "byte": {
                        "type": "byte"
                    },
                    "date": {
                        "type": "date",
                        "format": "date_optional_time"
                    },
                    "float": {
                        "type": "double"
                    },
                    "int": {
                        "type": "integer"
                    },
                    "ip": {
                        "type": "text"
                    },
                    "long": {
                        "type": "long"
                    },
                    "short": {
                        "type": "short"
                    },
                    "str": {
                        "type": "text"
                    }
                }
            }
        }
    }
}

----- documents -----
{
    "str": "def",
    "byte": -10,
    "short": -1000,
    "int": -200000000,
    "long": -20000000000,
    "float": 100.1,
    "date": "2017-06-05T04:05:02",
    "bool": false,
    "ip": "::1"
}
{
    "str": "abc",
    "byte": 100,
    "short": 10000,
    "int": 2000000000,
    "long": 200000000000,
    "float": 0.1,
    "date": "2017-01-02T03:04:05",
    "bool": true,
    "ip": "127.0.0.1"
}

Formatting a table for Jupyter Notebook

https://nbviewer.jupyter.org/github/thombashi/pytablewriter/blob/master/examples/ipynb/jupyter_notebook_example.ipynb

jupyter_notebook_table

Table formatting for Jupyter Notebook

Multibyte charater support

Write a table using multibyte character

You can use multibyte characters as table data. Multibyte characters also properly padded and aligned.

Sample Code:
import pytablewriter

writer = pytablewriter.RstSimpleTableWriter()
writer.table_name = "生成に関するパターン"
writer.headers = ["パターン名", "概要", "GoF", "Code Complete[1]"]
writer.value_matrix = [
    ["Abstract Factory", "関連する一連のインスタンスを状況に応じて、適切に生成する方法を提供する。", "Yes", "Yes"],
    ["Builder", "複合化されたインスタンスの生成過程を隠蔽する。", "Yes", "No"],
    ["Factory Method", "実際に生成されるインスタンスに依存しない、インスタンスの生成方法を提供する。", "Yes", "Yes"],
    ["Prototype", "同様のインスタンスを生成するために、原型のインスタンスを複製する。", "Yes", "No"],
    ["Singleton", "あるクラスについて、インスタンスが単一であることを保証する。", "Yes", "Yes"],
]
writer.write_table()
Output:
multi_byte_char_table

Output of multi-byte character table

For more information

More examples are available at https://pytablewriter.rtfd.io/en/latest/pages/examples/index.html

Installation

pip install pytablewriter

Some of the formats require additional dependency packages, you can install the dependency packages as follows:

  • Elasticsearch
    • pip install pytablewriter[es6] or pip install pytablewriter[es5]

  • Excel
    • pip install pytablewriter[excel]

  • HTML
    • pip install pytablewriter[html]

  • SQLite
    • pip install pytablewriter[sqlite]

  • TOML
    • pip install pytablewriter[toml]

  • All of the extra dependencies
    • pip install pytablewriter[all]

Dependencies

Python 2.7+ or 3.4+

Optional dependencies

Test dependencies

Documentation

https://pytablewriter.rtfd.io/

Tasks

https://trello.com/b/kE0XG34y

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytablewriter-0.43.1.tar.gz (132.2 kB view details)

Uploaded Source

Built Distribution

pytablewriter-0.43.1-py2.py3-none-any.whl (68.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytablewriter-0.43.1.tar.gz.

File metadata

  • Download URL: pytablewriter-0.43.1.tar.gz
  • Upload date:
  • Size: 132.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for pytablewriter-0.43.1.tar.gz
Algorithm Hash digest
SHA256 c0d6bdaee382386e2c430a229d003cffec3e241141d770a798da410ac1370c46
MD5 6a1fcf2f02a424e4e3215730e11c7024
BLAKE2b-256 c38ed836b0a2a3d185732340fb239a8e2b9eebdb27ba8ddf9fd915ad4c136732

See more details on using hashes here.

File details

Details for the file pytablewriter-0.43.1-py2.py3-none-any.whl.

File metadata

  • Download URL: pytablewriter-0.43.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 68.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for pytablewriter-0.43.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 bd249f4dae8bfba7980db060566f343f431f02362d9278da797a4a2ca3776661
MD5 2f4e2b18c425d75f2758b704248710b3
BLAKE2b-256 e5bb7929d0d2a439ea4f2c745bcb4000e47d6fe07f4696ff747704d818cb27b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page