Skip to main content

A Python package that provides general utility functions for managing configuration, user-logging, directories and data-types as well as a basic run-time profiler.

Project description

pytensils

Tests Unit-Tests Coverage
Package PyPI latest release PyPI downloads License - MIT Supported versions

pytensils is a Python package that provides general utility functions for managing configuration, user-logging, directories and data-types as well as a basic run-time profiler.

Installation

The source code is available on GitHub.

# Via PyPI
pip install pytensils

Documentation & examples

An overview of all public pytensils objects, functions and methods exposed within the pytensils.* namespace.

Configuration-file management

.config contains the class methods for reading, writing and validating .json format configuration-files. Access the Source code via GitHub.

Initialize an instance of the config-handler

The config.Handler(path: str, file_name: str, create: bool = False, Logging: pytensils.logging.Handler | None = None) constructor initializes an instance of the config class and validates that path and file_name exist. Should the path not exist, the constructor raises an OSError. Should the file_name not exist, the constructor raises a FileNotFoundError. Should the content not be able to be parsed as json, the constructor raises a TypeError.

Advanced parameters

  • The parameter create can be set to False to initialize an instance of the class without reading config-data from /path/file_name. The create parameter is useful in order to generate the configuration-file via the Python process.
  • The parameter Logging can be set to an instance of the pytensils.logging.Handler class to enable pretty user-logging for config-related read, write and validation errors natively.
import os
from pytensils import config

"""
    Assume there is a file, named './config.json' within the same folder
    as the executed Python process with the following contents,

        {
            "config": {
                "str": "ABC",
                "bool": true,
                "int": 1,
                "float": 9.9,
                "list": ["A", "B", "C"]
            }
        }

"""

# Initialize the config handler `class`
Config = config.Handler(
    path=os.path.dirname(__file__),
    file_name='config.json'
)

Access or re-load the configuration-file data

The configuration-file data can be accessed via a class variable, .data, returned as a copy as a dictionary, .to_dict(), or read directly from the source .json file, .read().

import os
from pytensils import config

# Initialize the config handler `class`
Config = config.Handler(
    path=os.path.dirname(__file__),
    file_name='config.json'
)

# Access the configuration-file data directly via a `class` variable
print(Config.data)

# Return a copy of the configuation-file data as a dictionary
config_dictionary = Config.to_dict()
print(config_dictionary)

# Re-load the configuration-file data
print(Config.read())

Validate the configuration-file

The .validate(dtypes: dict) function validates that the structure of config matches the structure of dtype and returns True when validation is successful. The function raises any type errors within the console output as a config.ValidationError when validation fails.

import os
from pytensils import config

# Dictionary of expected data-types
dtype_dict_object = {
    "config": {
        "str": "str",
        "bool": "bool",
        "int": "int",
        "float": "float",
        "list": "list",
        "dict": "dict"
    }
}

# Initialize the config handler `class`
Config = config.Handler(
    path=os.path.dirname(__file__),
    file_name='config.json'
)

# Validate
if config.validate(dtypes=dtype_dict_object):
    print('NOTE: Validation succeeded.')

Write a dictionary to a .json configuration-file

The .write() method writes the configuration-file data to a .json file while the .from_dict(dict_object: dict, dtypes: dict | None = None) method replaces the configuration-file data and writes the data to a .json file. When a dictionary is passed to .from_dict as dtypes, the function also validates dict_object based on the data-types in dtypes.

import os
from pytensils import config

# Initialize the config handler `class`
Config = config.Handler(
    path=os.path.dirname(__file__),
    file_name='config.json'
)

# Change the value of the "str" parameter within the "config" object
Config.data['config']['str'] = "DEF"

# Write
Config.write()

# Replace the configuration-file data and write, without validation
Config.from_dict(
    dict_object={
        "config": {
            "str": "DEF",
            "bool": True,
            "int": 1,
            "float": 9.9,
            "list": ["A", "B", "C"]
        }
    }
)

User-logging

.logging contains the class methods for writing 'pretty' user-logging as well as a decorator for catching and logging unhandled exceptions raised during the execution of functions. Access the Source code via GitHub.

Access an example user-log, example.log, that show-cases .logging functionality via GitHub.

Set-up logging

The logging library contains various static control variables that can be configured for all instances of the logging.Handler within a single Python session.

  • logging.INDENT, the number of space-characters for the standard log-indentation (default = 4).
  • logging.LINE_LENGTH, the maximum number of characters for a line of content (default = 79). For content longer than logging.LINE_LENGTH, str type content is automatically wrapped while list or dict type content is truncated. logging.LINE_LENGTH does not apply to pd.DataFrame type content.
  • logging.TIME_ZONE, the time-zone for representing start and end time values (default = 'America/New_York'). Access the list of available timezones via Wikipedia.
from pytensils import logging

# Set-up
logging.INDENT = 4
logging.LINE_LENGTH = 79
logging.TIME_ZONE = 'America/Chicago'

Initialize an instance of the logging-handler

The logging.Handler(path: str, file_name: str = 'python.log', description: str = 'Environment information summary.', metadata: dict, create: bool = True, debug_console: bool = False) constructor initializes an instance of the logging class and validates that path exists. The constructor also validates that file_name exists when create=False. Should the path not exist, the constructor raises an OSError. Should the file_name not exist, the constructor raises a FileNotFoundError.

Advanced parameters

  • The parameter create can be set to False to initialize an instance of the class without creating the .log file. The create parameter is useful so that multiple Python processes can write to the same user-log without overwriting the .log file.
  • The parameter debug_console can be set to True to force outputting all content to the output console, in addition to the user-log.
import os
from pytensils import logging

# Initialize the logging handler `class`
Logging = logging.Handler(
    path=os.path.dirname(__file__)
)
User-log content
----------------

>    Run information
>    ---------------
>    
>    Environment information summary.
>    
>        Start time    : 2024-03-22 01:35:22

Write a header to the user-log

The .write_header(header: str, divider: bool) method writes a pretty-styled header to the user-log. Should the header length exceed the logging.LINE_LENGTH parameter then the function raises a ValueError. Should the header not be of type str then the function raises a TypeError.

import os
from pytensils import logging

# Initialize the logging handler `class`
Logging = logging.Handler(
    path=os.path.dirname(__file__)
)

# Write header
Logging.write_header(
    header='Task-information'
)
User-log content
----------------

>    --------------------------------------------------------------------------
>
>    Task-information
>    ----------------

Write a status message to the user-log

The .write(content: str | list | dict | pd.DataFrame, level: str) method writes a pretty-styled content object to the user-log. The function supports content objects of type str, list, dict and pd.DataFrame. Should the content not be of any of the allowed types then the function raises a TypeError.

import os
from pytensils import logging

# Initialize the logging handler `class`
Logging = logging.Handler(
    path=os.path.dirname(__file__)
)

# Write header
Logging.write_header(
    header='Examples: `str`'
)

# Write `str`
Logging.write(
    content='This is a critical error string',
    level='CRITICAL'
)
Logging.write(
    content=''.join([
        'This is an error string that exceeds the',
        ' line-length limit set for the log-file.'
    ]),
    level='ERROR'
)
Logging.write(
    content='This is a warning string.',
    level='WARNING'
)
Logging.write(
    content='This is a debug string.',
    level='DEBUG'
)
Logging.write(
    content=''.join([
        'This is a boring short story.'
        ' The quick brown fox jumped over the lazy dog.'
        ' The end.'
    ]),
    level='INFO'
)
Logging.write(
    content='This is an unset string.'
)
User-log content
----------------

>    --------------------------------------------------------------------------
>
>    Examples: `str`
>    ---------------
>    
>*** CRITICAL: This is a critical error string
>*** ERROR: This is an error string that exceeds the line-length limit set for
>        the log-file.
>*** WARNING: This is a warning string.
>    DEBUG: This is a debug string.
>    INFO: This is a boring short story. The quick brown fox jumped over the
>        lazy dog. The end.
>    This is an unset string.

Write a list to the user-log

Cont'd examples related to the .write(content: str | list | dict | pd.DataFrame, level: str) method.

import os
from pytensils import logging

# Initialize the logging handler `class`
Logging = logging.Handler(
    path=os.path.dirname(__file__)
)

# Write header
Logging.write_header(
    header='Examples: `list`'
)

# Write `list`
Logging.write(
    content='This is a list output.'
)
Logging.write(
    content=[
        ' '.join(str(i) for i in list(range(52))),
        ['A', 'B', 'C'],
        ('A', 'B', 'C'),
        1,
        2,
        3,
    ]
)
User-log content
----------------

>    --------------------------------------------------------------------------
>
>    Examples: `list`
>    ----------------
>   
>    This is a list output.
>    
>        - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 [...]
>        - ['A', 'B', 'C']
>        - ('A', 'B', 'C')
>        - 1
>        - 2
>        - 3

Write a dictionary to the user-log

Cont'd examples related to the .write(content: str | list | dict | pd.DataFrame, level: str) method. Currently, only dictionaries with a depth of 1 are supported. Should a dictionary with depth > 1 be passed, the function raises a ValueError.

import os
from pytensils import logging

# Initialize the logging handler `class`
Logging = logging.Handler(
    path=os.path.dirname(__file__)
)

# Write header
Logging.write_header(
    header='Examples: `dict`'
)

# Write `dict`
Logging.write(
    content='This is a dictionary output.'
)
Logging.write(
    content={
        'A': 'a',
        'B': 'b',
        '123s': ' '.join(str(i) for i in list(range(52))),
        'Nineteen characters': 19,
        'List': ['A', 'B', 'C'],
        'Tupple': ('A', 'B', 'C')
    }
)
User-log content
----------------

>    --------------------------------------------------------------------------
>
>    Examples: `dict`
>    ----------------
>   
>    This is a dictionary output.
>    
>        A                      : a
>        B                      : b
>        123s                   : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [...]
>        Nineteen characters    : 19
>        List                   : ['A', 'B', 'C']
>        Tupple                 : ('A', 'B', 'C')

Write a dataframe to the user-log

Cont'd examples related to the .write(content: str | list | dict | pd.DataFrame, level: str) method.

import os
from pytensils import logging

# Initialize the logging handler `class`
Logging = logging.Handler(
    path=os.path.dirname(__file__)
)

# Write header
Logging.write_header(
    header='Examples: `pd.DataFrame`'
)

# Write `pd.DataFrame`
Logging.write(
    content='This is a dataframe output.'
)
Logging.write(
    content=pd.DataFrame(
        {
            "Calories": [420, 380, 390],
            "Duration": [50, 40, 45],
            "Day": ['Monday', 'Tuesday', 'Wednesday']
        }
    )
)
User-log content
----------------

>    --------------------------------------------------------------------------
>
>    Examples: `pd.DataFrame`
>    ------------------------
>   
>    This is a dataframe output.
>    
>          Calories    Duration  Day
>        ----------  ----------  ---------
>               420          50  Monday
>               380          40  Tuesday
>               390          45  Wednesday

Close the user-log

The .close() method writes a pretty-styled run-time summary and closes the user-log.

import os
from pytensils import logging

# Initialize the logging handler `class`
Logging = logging.Handler(
    path=os.path.dirname(__file__)
)

# Close
Logging.close()
User-log content
----------------

>    --------------------------------------------------------------------------
>
>    Run information
>    ---------------
>    
>    Environment information summary.
>    
>        Start time    : 2024-03-22 01:35:22
>    
>    --------------------------------------------------------------------------
>    
>    Run time
>    --------
>    
>    Run-time performance summary.
>    
>        Start time    : 01:35:22.098505
>        End time      : 01:35:22.183973
>        Run time      : 00:00:00.085468
>
>    --------------------------------------------------------------------------

Close the user-log on unhandled exceptions

The close_on_exception(func: Callable) decorator function returns the result of func and closes the user-log reporting any unhandled exceptions as critical errors raised by func before raising the exception.

import os
from pytensils import logging

# Initialize the logging handler `class`
Logging = logging.Handler(
    path=os.path.dirname(__file__)
)

# Define function that fails with an unhandled-exception
@Logging.close_on_exception
def divide_by_zero():
    return 1 /0

if __name__ == "__main__":
    divide_by_zero()
User-log content
----------------

>    Run information
>    ---------------
>    
>    Environment information summary.
>    
>        Start time    : 2024-03-22 01:35:22
>    
>    --------------------------------------------------------------------------
>    
>    Unhandled exception
>    -------------------
>    
>*** CRITICAL: The process failed due to an unhandled exception.
>
>    >>> ZeroDivisionError: division by zero
>    
>        Filename       : ~\example.py
>        Line Number    : Line 12
>        Function       : divide_by_zero()
>        Exception      : ZeroDivisionError
>    
>    --------------------------------------------------------------------------
>    
>    Run time
>    --------
>    
>    Run-time performance summary.
>    
>        Start time    : 01:35:22.234821
>        End time      : 01:35:22.520567
>        Run time      : 00:00:00.285746
>
>    --------------------------------------------------------------------------

General utilities

.utils contains the general functions for generating output directories and parsing data-types. Access the Source code via GitHub.

Generate an output directory

The generate_output_directory(path: str, root: str, sub_folders: list | None) function generates an output directory within path that contains root and all sub_folders. Should root already exist in path, the function raises an OSError.

import os
from pytensils import utils

# Create an output directory, called 'Outputs' with two sub-folders, 'A' and 'B'
utils.generate_output_directory(
    path=os.path.dirname(__file__),
    root='Outputs',
    sub_folders=['A', 'B']
)

Parse a string value into any data-type

The as_type(value: str, return_dtype: str) function parses a string value into the return_dtype and returns value as that type. Should value not convert into return_dtype, the function raises a TypeError. If the return_dtype is invalid, the function raises a NameError.

from pytensils import utils

# Parse a string value into an `int`
int_value = utils.as_type(
    value='1',
    return_dtype='int'
)

# Parse a list as a string into a `list`
list_object = utils.as_type(
    value='["A", "B", "C"]',
    return_dtype='list'
)

Run-time profiler

.profiler contains the general run-time decorator for timing the execution of functions. Access the Source code via GitHub.

Time the execution of a function

The run_time(func: Callable) decorator function returns the result of func and prints the execution time of func within the console output.

import time
from pytensils import profiler

# Write and time a function that waits 1-second
@profiler.run_time
def wait_1_second():
    time.sleep(1)

if __name__ == "__main__":
    wait_1_second()
Output
------

> [INFO] Function {wait_1_second()} executed in 00:00:01 hh:mm:ss

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytensils-1.2.0.tar.gz (26.7 kB view details)

Uploaded Source

Built Distribution

pytensils-1.2.0-py3-none-any.whl (16.7 kB view details)

Uploaded Python 3

File details

Details for the file pytensils-1.2.0.tar.gz.

File metadata

  • Download URL: pytensils-1.2.0.tar.gz
  • Upload date:
  • Size: 26.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pytensils-1.2.0.tar.gz
Algorithm Hash digest
SHA256 054e1dfa27e2ade0ff06090366901f6903336021c7f3d8b501ea5cb69f0b6c7e
MD5 cd5ea1c0e4048aa915db110d03facab5
BLAKE2b-256 228e9d107fa306394969aae33f3ee094d8e0ea8512363b11930a40f22ac54d8c

See more details on using hashes here.

File details

Details for the file pytensils-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: pytensils-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 16.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pytensils-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 19c39b37d2b66c19fa0205408812c4037f9b0adc7c23066261771ae7c2d68d15
MD5 57674e15c961031cec31334b1e94bac2
BLAKE2b-256 c1870f705aa3a7e8f93e091d6f7306150e8736dc4d3029b16b24989c124a3638

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page