Skip to main content

A framework for proteomics data analysis.

Project description

What is Pyteomics?

Pyteomics is a collection of lightweight and handy tools for Python that help to handle various sorts of proteomics data. Pyteomics provides a growing set of modules to facilitate the most common tasks in proteomics data analysis, such as:

  • calculation of basic physico-chemical properties of polypeptides:
    • mass and isotopic distribution
    • charge and pI
    • chromatographic retention time
  • access to common proteomics data:
    • MS or LC-MS data
    • FASTA databases
    • search engines output
  • easy manipulation of sequences of modified peptides and proteins

The goal of the Pyteomics project is to provide a versatile, reliable and well-documented set of open tools for the wide proteomics community. One of the project’s key features is Python itself, an open source language increasingly popular in scientific programming. The main applications of the library are reproducible statistical data analysis and rapid software prototyping.

Pyteomics is hosted at the following sites:

Feedback & Support

Please email to pyteomics@googlegroups.com with any questions about Pyteomics. You are welcome to use the BitBucket issue tracker to report bugs, request features, etc.

Project dependencies

Pyteomics uses the following python packages:

  • numpy
  • matplotlib (used by pyteomics.pylab_aux)
  • lxml (used by pyteomics.mzml, pyteomics.pepxml)

GNU/Linux

The preferred way to obtain Pyteomics is via pip Python package manager. The shell code for a freshly installed Ubuntu system:

sudo apt-get install python-setuptools python-dev build-essential
sudo easy_install pip
sudo pip install lxml numpy matplotlib pyteomics

Windows

  • Download pre-compiled binary packages for Pyteomics dependencies:

  • Download a pre-compiled binary Pyteomics package from the list.

OR

  • If you have Enthought Python Distribution / ActivePython, execute in the command line:

    easy_install pip
    pip install lxml numpy matplotlib pyteomics
    

Project details


Release history Release notifications

History Node

3.4.2

History Node

3.4.1

History Node

3.4

History Node

3.3.1

History Node

3.3

History Node

3.2

History Node

3.1.1

History Node

3.1

History Node

3.0.1

History Node

3.0.0

History Node

2.5.5

History Node

2.5.4

History Node

2.5.3

History Node

2.5.2

History Node

2.5.1

History Node

2.5.0

History Node

2.4.3

History Node

2.4.2

History Node

2.4.1

History Node

2.4.0

History Node

2.3.0

History Node

2.2.2

History Node

2.2.1

History Node

2.2.0

History Node

2.1.6

History Node

2.1.5

History Node

2.1.4

History Node

2.1.3

History Node

2.1.2

History Node

2.1.1

History Node

2.1.0

History Node

2.0.3

History Node

2.0.2

This version
History Node

2.0.1

History Node

2.0

History Node

1.2.5

History Node

1.2.4

History Node

1.2.3

History Node

1.2.2

History Node

1.2.1

History Node

1.2.0

History Node

1.1.0

History Node

1.0.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
pyteomics-2.0.1.tar.gz (49.1 kB) Copy SHA256 hash SHA256 Source None Oct 4, 2012
pyteomics-2.0.1.win32_py2.7.exe (248.2 kB) Copy SHA256 hash SHA256 Windows Installer 2.7 Oct 4, 2012
pyteomics-2.0.1.win32_py3.2.exe (248.2 kB) Copy SHA256 hash SHA256 Windows Installer 3.2 Oct 4, 2012
pyteomics-2.0.1.win-amd64_py2.7.exe (275.8 kB) Copy SHA256 hash SHA256 Windows Installer 2.7 Oct 4, 2012
pyteomics-2.0.1.win-amd64_py3.2.exe (276.3 kB) Copy SHA256 hash SHA256 Windows Installer 3.2 Oct 4, 2012

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page